首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of a 20M star of extreme Population I (X=0.602,Z=0.044) from the main sequence through the He-exhaustion has been calculated with particular attention to the treatment of the semiconvective zones. Two different relations as convective instability criteria have been adopted R a +(/(4–3)) (d ln /d lnP) or R a ). The He-burning phase is substantially different in the two cases. In the first evolutionary picture the star begins the He-burning phase as red supergiant, while in the second one as blue supergiant. The two evolutions are compared with the observational blue to red supergiants ration B/n R in connection with the problem of the existence of the neutrino processes and taking into account the possible presence of a high percentage of binary systems among supergiants.We draw the conclusion that the massive star evolution seems to be still completely uncertain and also not able to give a decisive test for or against the neutrino emission.  相似文献   

2.
The velocity gradients of the contrastreaming electron beams observed in the Earth's magnetosphere can excite three types of ordinary mode instabilities, namely (i) B-resonance electron instability, (ii) ion cyclotron instability, and (iii) unmagnetized ion instability. The B-resonance electron instability occurs at small values of the shear parameter 10–4<S<10–3, whereS = [(1/e){dU o(x)}/(dx)] (U 0(x) and e being the streaming velocity of the electron beams and the electron cyclotron frequency, respectively). Near the equatorial plane of the bouncing electron beams region, this instability can generate electromagnetic waves having frequenciesf(0.045–0.2) Hz and wavelentghs (0.5–10)km, and the wave magnetic field is polarised in a radial direction. This instability can also occur in the plasma sheet region during the earthwards and tailwards plasma flows events and can generate waves, with wave magnetic field polarised along north-south direction, in the frequency rangef(0.007–0.02) Hz with (10–100)km nearR=–35R E . For 10–3<S<10–2, the ion cyclotron instability is excited and it can generate waves up to 5th harmonic or so of ion cyclotron frequency. ForS>10–2, the unmagnetized ion instability is excited which can generate electromagnetic waves having frequences from 5 to 50 Hz and typical wavelengths (0.5–6)km. The growth rates of all the three velocity shear driven instabilities are reduced in the presence of cold background plasma. The turbulence generated by these instabilities may give rise to enhanced effective electron-electron and electron-ion collisions and broaden the bouncing electron beams.  相似文献   

3.
An ionospheric plasma instability in the auroral electrojet region believed to be responsible for electromagnetic waves with angular frequency smaller thanv i is discussed. The threshold current velocityU t and oscillation growth rate are found for the realistic physical situation when a nonuniform plasma density and an ionization function are considered. It is found that the gradient of plasma density n may be neglected in the expressions forU t and and that the spectral density of fluctuations in the density of the plasma agrees well with the experimental data.  相似文献   

4.
For the region after the recombination era of the Universe the hydrodynamical density waves are analyzed including shear viscosity and heat conduction for =c as well as for <c(c is the critical density of the Universe). Very near to the end of the recombination era (z=1200) we find the well-known Jeans instability. It is shown that the influence of the shear viscosity on the instabilities in negligible, however, a visible influence of the bulk viscosity is present.  相似文献   

5.
Satellite observations of the heliospheric current sheet indicate that the plasma flow velocity is low at the center of the current sheet and high on the two sides of current sheet. In this paper, we investigate the growth rates and eigenmodes of the sausage, kind, and tearing instabilities in the heliospheric current sheet with the observed sheared flow. These instabilities may lead to the formation of the plasmoids and kink waves in the solar wind. The results show that both the sausage and kink modes can be excited in the heliospheric current sheet with a growth time 0.05–5 day. Therefore, these modes can grow during the transit of the solar wind from the Sun to the Earth. The sausage mode grows faster than the kink mode for < 1.5, while the streaming kink instability has a higher growth rate for > 1.5. Here is the ratio between the plasma and magnetic pressures away from the current layer. If a finite resistivity is considered, the streaming sausage mode evolves into the streaming tearing mode with the formation of magnetic islands. We suggest that some of the magnetic clouds and plasmoids observed in the solar wind may be associated with the streaming sausage instability. Furthermore, it is found that a large-scale kink wave may develop in the region with a radial distance greater than 0.5–1.5 AU.Also at Department of Earth and Space Science, University of Science and Technology of China, Hefei Anhui 230029, China.  相似文献   

6.
Waves with frequencies near the harmonics of the proton-cyclotron frequency, and propagating almost transverse to the ambient magnetic field, can become unstable by hot protons having an anti-loss cone (ALC) distribution function. The maximum growth rates increase with an increase in anti-loss cone index, ratio of the temperatures of trapped to missing protons, and with a decrease in H ( H being the ratio of transverse thermal pressure of protons to magnetic field pressure). The growth rates are typically in the range 0.01–1.0 , where is the proton-cyclotron frequency. This instability may be relevant to the observations of EHC waves on auroral field lines (Kintner, 1979), ULF waves in the day-side magnetosphere (Perrautet al., 1978) and the lowfrequency part of the electric field spectrum (from 5 Hz to 20 Hz) in the region upstream of the bow-shock (Gurnettet al., 1979).  相似文献   

7.
L. Mollwo 《Solar physics》1973,30(2):497-511
The generation of space charge waves by micro instabilities of the Harris type and their conversion into electromagnetic waves is discussed in the framework of the dispersion curves of the extraordinary wave mode in the warm plasma. Acceleration of electrons as also nonlinear interactions of waves are taken into account. A survey of the parameter regions of the Harris instabilities is given. Distinct values p / c and p / c result, enabling the instability as well as the conversion. The moving type IVmA bursts, and on the other side the impulsive cm-bursts and the first phase of type IV bursts are correlated to different values p / c and corresponding heights in the corona. The space charge waves can produce hydromagnetic waves by parametric excitation, too (type II bursts). The proposed mechanism is discussed with respect to the energy balance and to the magnetic configurations derived from observations with the Culgoora radioheliograph.  相似文献   

8.
A three-component fluid model of the Universe during the recombination era is analysed for = c ( c is the critical density). In addition to the well-known instability of the Jeans mode at 109 M , we find two more unstable modes at 1012 M .  相似文献   

9.
A model of a first generation intermediate star of 5M , with Z=0 has been considered. The model is at an advanced stage of its evolution and has a double shell burning. It burns helium in the inner shell, and hydrogen, via CNO cycle, in the outer shell. =(log/log) T and T =(log/logT) were computed allowing for the oscillations of the relative mass abundance of the reagents in nuclear reactions. Including =(log/log) T and =(log/logT) of mean molecular weight and the effect of the oscillations of abundances due to nuclear reactions, stability was studied. Contrary to the results of the static calculations, we found that instability due to the excitation mechanism provided by the high temperature sensitivity of energy generation rate propagates up to the surface. Thus the model in question was found to be unstable against radial adiabatic pulsations, in its fundamental mode.  相似文献   

10.
Most of the MHD instabilities originating from the nonuniformity of a plasma excite MHD surface wave. When the excited wave has a frequency s which corresponds to the local shear Alfvén wave resonance (s = k v a (x), where v a is the Alfvén speed and k is the wave number in the direction of the magnetic field), the surface wave resonantly mode converts to the kinetic Alfvén wave, the Alfvén wave having a perpendicular wavelength comparable to the ion gyroradius and being able to propagate across the magnetic field. We discuss various linear and nonlinear effects of this kinetic Alfvén wave on the plasma including particle acceleration and heating. A specific example for the case of a MHD Kelvin-Helmholtz instability is given.  相似文献   

11.
J. J. Aly  N. Seehafer 《Solar physics》1993,144(2):243-254
Models of the magnetic field in the solar chromosphere and corona are still mainly based on theoretical extrapolations of photospheric measurements. For the practical calculation of the global field, the so-called source-surface model has been introduced, in which the influence of the solar wind is described by the requirement that the field be radial at some exterior (source) surface. Then the assumption that the field is current-free in the volume between the photosphere and this surface allows for its determination from the photospheric measurement. In the present paper a generalization of the source-surface model to force-free fields is proposed. In the generalized model the parameter( = ×B·B/B 2)must be non-constant (or vanish identically) and currents are restricted to regions with closed field lines. A mathematical algorithm for computing the field from boundary data is devised.  相似文献   

12.
In the solar wind, electrostatic ion cyclotron waves can be excited by electrons when the flow velocity becomes supersonic. The waves reduce the proton temperature anisotropy and heat the protons effectively. Temperature equations for T e ,T p and T p are solved numerically in the region from 1 AU to the Sun, with the non-thermal proton heating rate included as a parameter. Distributions of T e ,T p , T p and the proton heating rate are determined and found to be in good agreement with the proton heating rate expected from the linear growth rate of electrostatic ion cyclotron waves. The electron thermal conductivity is reduced approximately 2–3 times smaller than the usual collisional one due to the plasma wave instabilities. Effective energy exchange rates from proton-proton and electron-proton interactions are 1–10 and 10–100 times larger than the Coulomb collision rates v ppand v ep,respectively.  相似文献   

13.
Hong Wei Li 《Solar physics》1986,104(1):131-136
The variations of the growth rates of ECM at first four harmonics in X-, Z-, and O-modes excited by a hollow beam distribution of weakly relativistic electrons with a parameter p / e are presented in this paper. The results show that the second harmonic of ECM in X-mode dominates the instability if < 1, and if 1.2 , 2 or 2.2 3 the third or fourth harmonic will dominate. The second and third harmonics of Z-mode waves grow faster only if 2 2.2 and 3 3.2, respectively, so it would not be a competition in most cases. It is suggested that the ECM emission at these harmonics in X-mode is a possible mechanism to produce solar spike emissions with high brightness temperature at shorter and longer decimetric wavelengths.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.On leave from the Department of Astronomy, Nanjing University, Nanjing, The People's Republic of China.  相似文献   

14.
Durney  Bernard R. 《Solar physics》2000,197(2):215-226
The integrals, Ii(t) = GL ui j × B i dv over the volume GL are calculated in a dynamo model of the Babcock–Leighton type studied earlier. Here, GL is the generating layer for the solar toroidal magnetic field, located at the base of the solar convection zone (SCZ); i=r, , , stands for the radial, latitudinal, and azimuthal coordinates respectively; j = (4)-1 × B, where B is the magnetic field; ur,u are the components of the meridional motion, and u is the differential rotation. During a ten-year cycle the energy cycle I(t)dt needs to be supplied to the azimuthal flow in the GL to compensate for the energy losses due to the Lorentz force. The calculations proceed as follows: for every time step, the maximum value of |B| in the GL is computed. If this value exceeds Bcr (a prescribed field) then there is eruption of a flux tube that rises radially, and reaches the surface at a latitude corresponding to the maximum of |B| (the time of rise is neglected). This flux tube generates a bipolar magnetic region, which is replaced by its equivalent axisymmetric configuration, a magnetic ring doublet. The erupted flux can be multiplied by a factor Ft, i.e., by the number of eruptions per time step. The model is marginally stable and the ensemble of eruptions acts as the source for the poloidal field. The arbitrary parameters Bcr and Ft are determined by matching the flux of a typical solar active region, and of the total erupted flux in a cycle, respectively. If E(B) is the energy, in the GL, of the toroidal magnetic field B = B sin cos , B (constant), then the numerical calculations show that the energy that needs to be supplied to the differential rotation during a ten-year cycle is of the order of E(Bcr), which is considerably smaller than the kinetic energy of differential rotation in the GL. Assuming that these results can be extrapolated to larger values of Bcr, magnetic fields 104 G, could be generated in the upper section of the tachocline that lies below the SCZ (designated by UT). The energy required to generate these 104 G fields during a cycle is of the order of the kinetic energy in the UT.  相似文献   

15.
Apparent radius, visual brightness, effective temperature and absolute radius for 416 B5 v-F5 v stars of the catalogue of the Geneva Observatory (Rufener, 1976) have been determined.Twenty-eight stars, anomalous in log versus (m v)0 diagrams, have been singled out. A good correlation for seven stars, in common with the list of Hanbury Brownet al. (1974), has been found. Similar parameters determined for 279 B5 v-F5 v stars of two preceding papers (Fracassiniet al., 1973, 1975) have allowed us to determine the averaged diagrams logq v/q, logR/R and logT e versus (B-V)0 for 695 B5 v-F5 v stars.Moreover, in the present paper a good correlation logq v/q versus logR/R and careful relation M v=–7.40logR/R +3.31 for B5 v-F5 v stars have been determined. Plain correlations between logR/R and blanketing parameterm 2 for some spectral types seem to point out that there arereal differences in the absolute radii of stars of thesame spectral type, in agreement with recent researches on the HR diagram (Houck and Fesen, 1978).Systematic differences between double (spectroscopic and visual) and single stars are found. In particular, the averaged relation m 2 versus logR/R shows that A2 v-F5 v double stars may have a higher metallicity indexm 2 and smaller absolute radii than single stars. Finally, the diagram logv sini versus logR/R confirms some properties of binary systems found by other researchers (Huang, 1966; Plavec, 1970; Levato, 1974; Kitamura and Kondo, 1978).Thesis for the degree in Applied Physics.  相似文献   

16.
Relativistic, isentropic, homogeneous models are constructed by a method that automatically detects instabilities, and evolutionary tracks of central conditions are shown on a (T, ) diagram. Models heavier than 20M become unstable because of pair creation. Iron photodisintegration causes instability in the mass range between 1.5M and 20M . General relativistic effects bring about the onset of instability in models of 1.2–1.5M when the central density is about 1010 g/cm3. Lighter models become white dwarfs. It is pointed out that general relativistic instability will prevent the formation of neutron stars through hydrostatic evolution and may be relevant in setting off low-mass supernovae.  相似文献   

17.
Evolutionary tracks up to the point of dynamical instability are obtained for isentropic objects with rest masses ranging from 102 M to 107 M . Accurate values for the red shift, specific entropy, luminosity and effective temperature at the onset of collapse are given.  相似文献   

18.
It is proved that (1) electromagnetic fields with electric and magnetic components parallel to one another are solutions of Maxwell's equations; (2) the equationB(B)=0 (B is the magnetic field) is gauge and relativistically-invariant for systems of reference moving with velocityv/c=EB(1+v 2/c 2)/(E 2+B 2).  相似文献   

19.
The velocity shear of ion beams observed in the polar cusp region can drive the kinetic Alfvén modes unstable. A hot ion beam can excite both a resonant kinetic Alfvén wave instability and a nonresonant coupled Alfvén ion-acoustic wave instability. For the case of a cold ion beam only the latter instability is excited. For the altitude range of 5–7R e , velocity shearS0.04–1.0 is needed to excite the kinetic Alfvén wave instabilities. HereS=(dV B / cB dx), whereV b is the streaming velocity,and cB is the gyrofrequency of the bean ions. The excited modes have frequencies, in the satellite frame of reference, in the ULF frequency range. The noise generated by the velocity shear-driven Alfvén modes is electromagnetic in nature. These modes have a substantial component of parallel electric fields and, therefore, they can play an important role in the ionosphere-magnetosphere coupling process occurring in the polar cusp region.  相似文献   

20.
Cyclotron waves in the solar wind near 1 AU with frequencies well below the electron cyclotron frequency and wavelengths much larger than the electron cyclotron radius but less than the proton cyclotron radius are considered. The cyclotron radii are defined from parallel thermal velocity of electron component and proton component with respect to the interplanetary magnetic field. No LH cyclotron waves are found to propagate for p < 0, where p 1 –T p/T p is the temperature anisotropy of the proton component with respect to the interplanetary magnetic field. The damping or growth of RH cyclotron waves is found to depend on the frequency range and the temperature anisotropy of the proton component. The RH cyclotron waves are damped in the frequency range r | p | p for p < 0, where p is the proton cyclotron frequency. RH cyclotron instabilities occur in the frequency range | p | p > r > | p | p /(1– r ) for p < 0. The marginal state is at r =| p | p .Abstract presented at theInternational Symposium on Solar-Terrestrial, São Paulo, Brazil, 17–22 June, 1974  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号