首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏高原东部玛多-沙马地区的重力场与深部构造   总被引:9,自引:4,他引:9  
根据青藏高原东部玛多-沙马(下察隅)重力剖面的重力数据资料,对该地区的重力场和深部地壳构造特征作了分析研究,提出青藏高原东部的布格重力异常是高原边缘高,内部低,地壳厚度是边缘薄,内部厚,平均地壳厚度为60km左右,在察隅-沙马地区,为负均衡异常区,因此,该地区是属于地壳上升的地区,此项结果,填补了察隅-沙马地区的均衡重力异常的空白。  相似文献   

2.
Local line-of-sight (LOS) Bouguer gravity anomalies of the Apennines and Taurus Mountains of the Moon have been calculated form low-altitude LOS free-air Doppler gravity profiles. The topography of the mountain areas is reflected by free-air gravity highs indicating no complete isostatic compensation. The resultant Bouguer gravity shows no anomalies for the Apennines, indicating lack of isostatic compensation. For the older Taurus Mountains significant local Bouguer minima of about ? 15 mgal indicate at least partial compensation.If a viscoelastic compensation mechanism (bending of a viscoelastic plate overlying a fluid half-space) is assumed, models for the crustal viscosity as a function of time give limits of the range of possible models from 1024 to 5 × 1025 P at 4.4 × 109 y BP, 1026 – 1027 P at 3.9 × 109 y, and 5 × 1026 – 1028 P at 3.0 × 109 y. For earlier times only a lower bound of 1027 P can be given.Two profiles of the Taurus area have been investigated; they show no significant Bouguer anomalies across the mare basalt patches of Lacus Bonitatis and Sinus Amoris and thus can be used to estimate an upper limit for the basalt thicknesses. For Lacus Bonitatis this limit is 1.3 km; the limit is reached for Sinus Amoris at an average thickness of 0.3 km, with 1.5 km in the centre. Earlier results from DeHon and Waskom are consistent with the gravity data.  相似文献   

3.
This paper presents a probable isostatic model of the East Anatolian Region, which lies in a belt of significant plate movements. Probable locations of the horizontal and vertical discontinuities in the crust structure were determined using the normalized full gradient (NFG) method. For the purpose of explaining the mechanism that supports topography corresponding to the crust thickness in the region, calculations of effective elastic thickness (T e) were carried out initially by utilizing admittance and misfit functions. According to these results, the effective elastic thickness value obtained was less than the crust thickness, even though the isostatic model does not conform with the Airy model. Consequently, it was assumed that there could be problems beneath the crust. Hence, the NFG method was applied on the Bouguer gravity data of the region in order to investigate probable discontinuities in the crust structure. According to the NFG results, vertical structural transitions were observed at a depth ranging between 10 and 30 km, which begin immediately north of the Bitlis Zagros Suture Zone (BZSZ) and continue in a northerly direction. The relationship between the effective elastic thickness (T e; 13 km in average as determined in the last stage), and the seismogenic zone in the region was investigated. If the T e value happens to be less then the crustal thickness, then one can say that there are problems in the crustal structure of the region similar to Eastern Anatolia. Indeed, when NFG results of the study area are examined, numerous vertical and horizontal discontinuities in the crust can be observed. These discontinuities, which correspond to low Bouguer gravity anomalies and shallow focal depth-earthquakes, are probably the source of the factors which rule the tectonic mechanism of the region.  相似文献   

4.
The deep seismic sounding project Blue Norma was carried out in the summer of 1977 in northern Scandinavia in order to investigate the deep structure of the Norwegian continental margin and the Caledonian mountain chain. During the measurements, by chance the core phase PKIKP of an earthquake at the New Hebrides was recorded with 30 seismic field stations along a profile through the central Caledonides. The results of the refraction seismic data, as obtained by a ray-tracing method, are presented and compared to the interpretation of the relative residuals of the PKIKP travel times. From both data sets a continentward down-dipping crust-mantle boundary is evaluated. From the interpretation of the refraction seismic measurements a crustal thickness of 32 km below the coastline and 42 km below the central mountain chain is obtained. The increase of the crustal thickness derived by the inversion of the travel-time residuals along this line amounts only to 6 km. This considerable discrepancy can only be explained by an eastward increasing seismic velocity in the mantle.  相似文献   

5.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

6.
帕米尔东北缘地壳结构的P波接收函数研究   总被引:6,自引:2,他引:4       下载免费PDF全文
利用位于新疆帕米尔东北缘地带12个固定数字地震台和天山动力学Ⅱ期10个流动宽频带数字地震台记录的高质量远震波形数据,应用接收函数H叠加方法研究了帕米尔东北缘的地壳厚度-泊松比特征和部分台站下方的壳内界面深度.研究发现:(1) 帕米尔东北缘的Moho面起伏变化剧烈,其总体分布呈现东薄西厚、南厚北薄的特征,由塔里木盆地向天山延伸,地壳厚度约从45 km加深到55 km,从塔里木盆地向西昆仑山延伸,地壳厚度约从45 km加深到69 km;(2)沿着天山动力学Ⅱ期剖面,位于塔里木盆地北缘台站的壳内间断面的深度约为13~16 km,向北进入天山南麓加深到20 km左右,继续向北进入南天山山区壳内间断面不明显,可能暗示塔里木盆地基底向北俯冲,俯冲距离可能到达南天山的山前;(3)研究区地壳泊松比变化复杂(约从0.20到0.31),显示地壳物质组成的复杂性和显著的不均匀构造;(4)整个研究区的地壳厚度和泊松比之间没有明显的相关性,但天山动力学Ⅱ期剖面的结果表明,从塔里木盆地北缘到西南天山,地壳厚度和泊松比之间存在反相关关系,意味着天山地壳的增厚可能主要是通过以长英质岩石为主要组成成分的上地壳叠置而成;(5) 研究区全部地震台地壳厚度与海拔高程的线性回归方程表明地壳厚度与海拔的相关性相对较弱(相关系数为0.66),天山动力学Ⅱ期10个台站的地壳厚度与海拔具有很好的相关性(相关系数为0.85),可能表明沿该剖面地壳整体上处于相对均衡的状态.  相似文献   

7.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

8.
依据EIGEN-6C4重力模型和ETOPO1高程模型数据,围绕新疆精河6.6级地震展开岩石圈均衡与挠曲机理研究,得到如下结论:(1)震中附近的布格与自由空气重力异常分别为-221和-92mGal(10~(-5 )m·s~(-2)),震中位于重力异常高梯度带上;(2)震中周边地区地壳厚度约为50km,密度结构总体变化平缓,东西方向地壳厚度变化较小,但自南向北地壳厚度逐渐变薄,精河6.6级地震初始破裂发生在上中地壳分界面附近;(3)震中附近岩石圈承载的垂向构造应力为20MPa左右,震中位于岩石圈垂向构造应力极大值附近的高梯度带上;(4)地震周边地区岩石圈有效弹性厚度最优解为26km,加载比最优解为F_1=1,F_2=F_3=0,表明该区域岩石圈相对坚硬,且导致岩石圈变形的初始加载全部来自地表.  相似文献   

9.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

10.
Summary The records at Athens of 85 earthquakes with epicenters in several regions on the earth were used to determine group velocities along thirty five paths. The mean crustal thickness along each path has been estimated by comparing the observations withPress's standard curves. A linear relation has been found between the mean crustal thickness and mean elevation along each path. This relation is in agreement with Airy's isostatic hypothesis. Determination of Love wave dispersion along five paths and Rayleigh wave dispersion along two paths in southeastern Europe and northern Asia Minor gave values from 35 to 45 km for the crustal thickness in this region.  相似文献   

11.
Following Airy and Pratt principles, five kinds of local-compensation models are analysed and a rapid 3-D gravity formula is utilized to calculate isostatic anomalies for 66 models with different parameters. It is noted that isostatic gravity maps appear nearly identical in their main patterns and features. The optimum compensation model in North China is one of modified Airy models in which the different density distribution in the surface, upper crust and lower crust is taken into account and the standard crustal thickness is about 50km. The position of the complete compensation interface is located in the upper mantle. The North China platform as a whole is under sub-isostatic equilibrium status with an isostatic anomaly of about 18·10?5 m/s2 on an average. The distribution of isostatic gravity anomaly shows an obvious blockwise pattern. Most positive anomaly areas occur over the eastern part, the Jiao-Liao Block, Mt. Yan block and northern margin of the Hebei-Shandong block, whereas a negative area occurs in the Shanxi graben. The comparison of models indicates that the Moho discontinuity is not suitable to be taken as a compensation interface, and the compensation effects in Airy model are better than that in Pratt model, which is consistent with the feature of dominant layered structure and less lateral inhomogeneity in crust. Some results about composite compensation, the basic characteristics of isostatic anomaly and deep stucture will be published later in the second part of this paper.  相似文献   

12.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

13.
在云南省西部,跨越中、缅两国交界的横断山系地区(97°E~102°E,24°N~30°N)有近一半的面积尚没有重力测点、即重力数据空白区和重力测点稀少的普查级测区.以前的有关文献、图集中所给出对此地区的重力场都是十分模糊的结果与图件.因此应用这些资料无法详细地研究该地区重力场特征与深部地壳结构(构造).本文应用卫星重力异常资料作为“近似空间重力异常”,经中间层改正后给出的“计算布格重力异常”,其分布特征与该地区的地形高程呈很好的镜像相关.对相应山脉、河谷以及断裂构造都有所反映.特别是在横断山系地区该布格重力异常呈现为近南北的走向.为此,据该“计算布格重力异常”,并选定对该区有代表性的一条重力异常剖面作正反演计算,以得到其地壳深部结构剖面.结果表明,在横断山脉地区的地壳厚度在51~56 km间起伏变化;滇西北云岭山系以及玉龙山区的地壳厚度约在60 km以上. 最后,对所得结果与图件进行了讨论,并提出了几点认识和纠正的建议.  相似文献   

14.
维西—贵阳剖面重力异常与地壳密度结构特征   总被引:3,自引:2,他引:1       下载免费PDF全文
维西—贵阳剖面位于青藏高原东南缘,为青藏高原物质往东南逃逸、东构造结侧向挤压及华南地块北西西向推挤作用的重要地段.利用剖面观测的重力与GPS定位数据,结合区域背景重力场、地质构造及深部地球物理成果,反演研究剖面较为细化的地壳密度结构特征.观测研究表明:剖面布格重力异常总幅差变化达190×10-5 m·s-2,具"斜N"分段变化特征,从西往东呈上升(维西至攀枝花,水平梯变大)—下降(攀枝花至会泽,水平梯变较大)—上升(会泽至贵阳,水平梯变较小)态势;高程与布格重力异常比值的趋势性转折部位为康滇地轴核心和小江断裂带东侧,可能与先存构造或新生构造发育有关;剖面地壳密度结构可分上、中和下三层结构,各层底界面平均埋深分别约20km、35km和51km,金沙江—红河断裂带和鲜水河—小江断裂带为地壳结构相对简单与复杂的过渡带;地壳厚度西深东浅,可能是东构造结的侧向挤压所致;下地壳厚度变化相对较大,可能对地壳增厚起主要作用;华坪—攀枝花附近的Moho面隆起和上地壳高密度体的存在暗示上地幔往上底侵作用,对青藏高原物质向南东逃逸和东构造结的侧向挤压均起到一定阻挡作用;中地壳下伏有限低密度薄层有利于其上物质的南东逃逸和顺时针旋转,有利于其下物质受喜马拉雅东构造结作用下往东向运移.  相似文献   

15.
The Xing’an Mongolian Orogenic Belt (XMOB) and the northern margin of North China Craton (NCC) have undergone multistage tectonic superimposition and the tectonic evolution is extremely complicated. We collect the teleseismic data of 44 temporary broadband seismic stations deployed in the XMOB and the northern margin of NCC to calculate the P wave receiver functions. The crustal thickness and average crustal ratio as well as the Poisson’s ratios beneath 33 stations are estimated using the H-κ stacking method. The results show: (1) the crustal thickness of the study area ranges from 38.7 to 42.7 km, with an average thickness of 41.2 km. There is a great difference in crustal thickness on both sides of Solonker suture zone. The characteristics of crustal thickness support the geodynamic model that the Paleo-Asian Ocean subducted and closed at the Solonker suture zone. (2) The Poisson’s ratios in the study area are low, ranging from 0.215 to 0.277, with an average value of 0.243, suggesting that the rock composition of the area is dominated by felsic-acid rocks. (3) There exists a negative correlation between the Poisson’s ratio and the crustal thickness. Combined with the lower values of Poisson’s ratio, we speculate that the delamination is the major mechanism in crustal extension and thinning in the study area.  相似文献   

16.
Jeffreys-Bullen P and PKP travel-time residuals observed at more than 50 seismic stations distributed along Italy and surrounding areas in the time interval 1962–1979, indicate the complex velocity pattern of this region. Strong lateral velocity inhomogeneities and low velocity zones are required to explain the observed pattern of residuals. In particular, late arrivals of about 1 sec are observed in the Apenninic mountain range, requiring both greater crustal thickness and low velocity layers, coherent with seismic refraction data and surface wave dispersion measurements. The seismic stations located in the Western and Eastern Alps indicate the presence of high velocities. In the Western Alps the strong azimuthal variation of residuals and the high values of early arrivals have a close relationship to the Ivrea body, an intrusive crustal complex characterized by a velocity as high as 7–7.2 km/sec.A travel-time inversion performed with theAki et al. (1977) block model, confirms the peculiar characteristics and the sharp variations in the lithosphere of the whole Italian region, with values of velocity perturbations between many adjacent blocks, ranging in size from 50 to 100 km, and independent from the earth parametrization chosen, reaching values up to 10% in the lithospheric part and 5% in the asthenosphere. 3-D inversion requires also high velocity along the Tyrrhenian coastal margin, equivalent to an uprise of major crustal and lithospheric discontinuities along this part of the Italian peninsula. Moreover low velocity material must be present in the northern part of the Adriatic foreland, in the lithosphere-asthenosphere system, closely related to the stress and seismicity pattern, and the lateral bending of the lithosphere in the same region.  相似文献   

17.
We have studied the lateral velocity variations along a partly buried inverted paleo–rift in Central Lapland, Northern Europe with a 2D wide-angle reflection and refraction experiment, HUKKA 2007. The experiment was designed to use seven chemical explosions from commercial and military sites as sources of seismic energy. The shots were recorded by 102 stations with an average spacing of 3.45 km. Two-dimensional crustal models of variations in P-wave velocity and Vp/Vs-ratio were calculated using the ray tracing forward modeling technique. The HUKKA 2007 experiment comprises a 455 km long profile that runs NNW–SSE parallel to the Kittilä Shear Zone, a major deformation zone hosting gold deposits in the area. The profile crosses Paleoproterozoic and reactivated Archean terranes of Central Lapland. The velocity model shows a significant difference in crustal velocity structure between the northern (distances 0–120 km) and southern parts of the profile. The difference in P-wave velocities and Vp/Vs ratio can be followed through the whole crust down to the Moho boundary indicating major tectonic boundaries. Upper crustal velocities seem to vary with the terranes/compositional differences mapped at the surface. The lower layer of the upper crust displays velocities of 6.0–6.1 km/s. Both Paleoproterozoic and Archean terranes are associated with high velocity bodies (6.30–6.35 km/s) at 100 and 200–350 km distances. The Central Lapland greenstone belt and Central Lapland Granitoid complex are associated with a 4 km-thick zone of unusually low velocities (<6.0 km/s) at distances between 120 and 220 km. We interpret the HUKKA 2007 profile to image an old, partly buried, inverted continental rift zone that has been closed and modified by younger tectonic events. It has structural features typical of rifts: inward dipping rift shoulders, undulating thickness of the middle crust, high velocity lower crust and a rather uniform crustal thickness of 48 km.  相似文献   

18.
本文提出一种基于重力/GPS联合观测数据计算垂向构造应力的新方法.计算步骤如下:(1)通过重力/GPS联合观测数据计算布格重力异常;(2)依据布格重力异常数据推算莫霍面深度;(3)依据GPS观测数据,通过均衡理论计算均衡面深度;(4)依据莫霍面与均衡面之间剩余物质(壳幔物质密度差)所承受的附加浮力,计算地壳承载的垂向构造应力.本文利用上述构造应力新算法,计算了巴颜喀拉块体东边界及周边地区垂向构造应力分布,发现龙泉山断裂带以东地区垂向构造应力基本为零,龙泉山断裂带与龙门山断裂带之间地区垂向构造应力为正值,巴颜喀拉地块东部垂向构造应力为负值.鲜水河断裂带东南段周边蓄积了-40~-50 MPa的垂向构造应力,且梯度变化剧烈;松潘高原蓄积的垂向构造应力大约为-10~-20 MPa,相对较小.  相似文献   

19.
阿尔泰-阿尔金地学断面地壳结构   总被引:15,自引:7,他引:8       下载免费PDF全文
根据阿尔泰—阿尔金地学断面的地震纵、横波资料,建立了地壳速度及泊松比结构. 测区的地壳具有明显的三分结构特征,其纵波速度自上而下依次为6.0~6.3km/s、6.3~6.6km/s及6.9~7.0km/s;阿尔泰南缘的地壳最厚,为56km,准噶尔盆地的地壳最薄,为46km,大部分地区的地壳厚度为50km 左右. 准噶尔盆地与天山之间上地幔顶部的纵波速度为7.7~7.8km/s ;阿尔泰南缘及塔里木盆地上地幔顶部的纵波速度较高,为7.9~8.0km/s. 测线南部,包括东天山及塔里木东缘,自地表至30km深处的地壳纵波速度低,泊松比为0.25,表明上地壳主要为石英及花岗质成分;而测线北部(包括阿尔泰及准噶尔盆地)的中、上地壳则呈现较高的泊松比(0.26~0.27),可能为基性地壳的体现. 厚15~30km的下地壳纵波速度(6.9~7.0km/s)较高,泊松比为0.26~0.28,可能以镁铁质的麻粒岩成分为主. 位于天山及其南侧地壳中部的低速层(VP=5.9km/s, σ=0.25)则可能为晚古生代的构造热事件中的花岗质侵入岩.  相似文献   

20.
The 2-D crustal velocity model along the Hirapur-Mandla DSS profile across the Narmada-Son lineament in central India (Murty et al., 1998) has been updated based on the analysis of some short and discontinuous seismic wide-angle reflection phases. Three layers, with seismic velocities of 6.5–6.7, 6.35–6.40 and 6.8 km s–1, and upper boundaries located approximately at 8, 17 and 22 km depth respectively, have been identified between the basement (velocity 5.9 km s–1) and the uppermost mantle (velocity 7.8 km s–1). The layer with 6.5–6.7 km s–1 velocity is thin and is less than 2-km deep between the Narmada north (at Katangi) and south (at Jabalpur) faults. The upper crust shows a horst feature between these faults, which indicates that the Narmada zone acts as a ridge between two pockets of mafic intrusion in the upper crust. The Moho boundary, at 40–44 km depth and the intra-crustal layers exhibit an upwarp suggesting that the Narmada faults have deep origins, involving deep-seated tectonics. A smaller intrusive thickness between the Narmada faults, as compared to those beyond these faults, suggests that the intrusive activities on the two sides are independent. This further suggests that the two Narmada faults may have been active at different geological times. The seismic model is constrained by 2-D gravity modeling. The gravity highs on either side of the Narmada zone are due to the effect of the high velocity/high density mafic intrusion at upper crustal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号