首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘云 《沉积学报》1985,3(4):131-140
松辽盆地晚白垩世地层是由一套砂泥岩组成,储集了丰富的石油资源。过去一般认为这是一个内陆湖泊,为陆相沉积。近年来不少研究者从古生物、岩矿等方面提出与海有关的成因观点。本文根据对该区上白垩统泥岩粘土矿物进行了研究后认为,晚白垩世松辽盆地是个近海陆盆,气候温暖干燥,间转湿润,以淡水-半咸水碱性介质为主,青山口组及嫩江组沉积时,水域扩大,水体含盐度、碱性、还原性增强,可能遭受海侵。这些分析对含油地层的成因研究具有一定的意义。  相似文献   

2.
With the analysis of the sources and formation mechanism of the clay minerals in the sediment core from the Dalianhai lake in the Gonghe Basin,northeastern Tibet-Qinghai Plateau,clay mineral composition proxies,grain-size and carbonate contents have been employed for high-resolution study in order to reconstruct East Asian Summer Monsoon (EASM) over the northeastern Tibet-Qinghai Plateau during the lastdeglacial.The study also extended to establish a relationship between vegetation cover changes and erosion during the last 14.5 ka with pollen record and clay mineral proxies.Smectite/kaolinite and smectite/(illite+chlorite) ratios allow us to assess hydrolysis conditions in lowlands and/or physical erosion process in highlands of the Gonghe Basin.Before 12.9 Cal ka BP,both mineralogical ratios show low values indicative of strong physical erosion in the basin with a dominant cold and dry phase.After 12.9 Cal ka BP,an increase in both mineralogical ratios indicates enhanced chemical weathering in the basin associated with a warm and humid climate.The beginning of Holocene is characterized by high smectite/(illite+chlorite) and smectite/kaolinite ratios that is synchronous as with deposition of many peat laminae,implying the best warm and humid conditions specifically between 8.0 to 5.5 Cal ka BP.The time interval after 5.0 Cai ka BP is characterized by a return to high physical erosion and low chemical weathering with dry climate conditions in the basin.Comparing variations of clay mineral assemblages with previous pollen results,we observe a rapid response in terms of chemical weathering and physical erosion intensity to a modification of the vegetation cover in the basin.  相似文献   

3.
The widely exposed siliciclastic/carbonate succession exposed at Gebel El-Qurn, west Luxor, has been investigated from the mineralogical, petrographical and biostratigraphical points of view. The succession belongs to the lower Eocene, including the upper Esna Shale and the Thebes Formations that have been deposited under varied marine conditions and during alternating periods of abundant and ceased clastic influx. They contain abundant and well-diversified planktonic foraminifera and calcareous nannoplankton, suggesting deposition in open marine inner to middle shelf environments. Mineralogical analysis carried out by XRD revealed the presence of smectite, illite, kaolinite, sepiolite, palygorskite, and smectite–illite-mixed layer as the principal clay minerals, and calcite, dolomite, quartz, anhydrite, gypsum, hematite, and goethite as non-clay minerals. The clay mineral distributions in the sediments reflect the climatic conditions and the weathering processes at the source area as well as the differential hydraulic sorting during transportation. Calcite is the most abundant non-clay mineral, and this is consistent with high calcareous fossil content of the sediments. Petrographic examination of the carbonate lithologies within the succession enables to identify eight microfacies associations. These microfacies were affected by several diagenetic processes including; micritization, compaction, cementation, neomorphism, dissolution, dolomitization, and silicification. Dissolution of original test wall and replacement and infilling by iron oxides and recrystallized calcite were commonly observed. Calcareous nannofossils are generally common to frequent, highly diversified, and moderately to well preserved. Two calcareous nannofossil biozones; Tribrachiatus contortus Zone (NP10) and Discoaster binodosus (NP11) are recorded in the studied sediments suggesting lower Eocene age. Their associated nannofossil taxa are characterized by the predominance of warm water species. Sea-level fluctuations, basin physiography, climate, paleogeography, and sediment supply were the major controls on the deposition of the lower Eocene sediments at Gebel El-Qurn.  相似文献   

4.
Arieh Singer 《Earth》1984,21(4):251-293
The application of paleoclimatic interpretation to clay minerals from continental and marine sediments is reviewed and the advantages of this method are indicated. Levels relatively rich in chlorite, illite, palygorskite and quartz are interpreted as corresponding to relatively dry periods, while more humid periods lead to more intensive weathering and consequently to the dominance of clay minerals more advanced in the relative stability scale, such as kaolinite. Smectite is taken to indicate a climate with contrasting seasons and a pronounced dry season.Using this and similar schemes, the paleoclimates of areas adjoining the Mediterranean Basin, North Sea, North Atlantic, Southern Arctic, Equatorial and North-West Pacific, and North Phillipine Sea are reconstructed.Clay minerals in sediments, particularly marine sediments, can be useful indicators of paleoclimatic conditions. While they do not produce direct indications of climatic parameters, they provide integrated records of overall climatic impact. Occasionally, they may be superior to the more conventional paleoclimatic methods, such as pollen or oxygen-isotope analysis.The limitations imposed on the paleoclimatic interpretation of clay minerals in sediments are discussed on the basis of examples. The distinction between authigenic and detrital clay minerals is shown to be problematic, particularly with regard to smectite. The relationship between climatic parameters and clay-mineral formation is complicated by the intervention of extra-climatic factors such as topography, geomorphology, lithology and time. Post-depositional diagenetic changes may not be recognized. Differentiation during transport, due to size sorting or differential flocculation may overlap climate-induced differentiation. The association of clay-mineral assemblages with specific source areas presents difficulties due to dispersal pathways that are affected by type of transport agency, i.e., water, ice or wind. Transport agencies are not constant with time. By an interdisciplinary approach, with the paleoclimatic information derived from clay minerals being correlated with that obtained from the analysis of microfossils and oxygen isotope data, many of these limitations can be overcome.  相似文献   

5.
Arieh Singer 《Earth》1980,15(4):303-326
The interpretation of paleoclays for paleoclimatic purposes is based on five major assumptions: (1) clay mineral formation is directly related to climatic parameters; (2) once formed in the weathering milieu, clay minerals are stable and do not change any more as long as the climate remains stable (pre-burial stability); (3) clay mineral assemblages are uniform throughout the weathering profile; (4) once formed or deposited and buried, clay minerals are stable (post-burial stability); (5) the sensitivity of clay minerals towards environmental factors is uniform. All these assumptions have only a limited validity. Clay mineral formation is in few cases directly related to climatic parameters, nor do clay minerals always represent the stable end products in equilibrium with environmental factors. The vertical distribution pattern of authigenically formed clay minerals is seldom monomineralic. Post-depositional changes are not infrequent. The sensitivity of clay minerals to environmental factors is variable. The use of paleoclays occurring in paleosols and weathering profiles is reviewed. Paleoclays occurring in paleosols or weathering profiles are, in well-defined situations, suitable for paleoclimatic interpretation. At our present state of knowledge, references as to the nature of climates of the past that are based solely on the interpretation of paleoclays are warranted only in exceptional cases. Authigenic occurrences of clay minerals with limited stability fields that can be used as ‘marker minerals’ and the isotopic composition of paleoclay minerals promise, with future research, to increase the value of paleoclays as paleoclimatic indicators.  相似文献   

6.
通过X射线衍射系统分析了杭州湾地区SE2孔全新世沉积物的黏土矿物组成,结果显示研究层段黏土矿物主要由伊利石、绿泥石、高岭石和蒙脱石组成;伊利石结晶度较好,化学风化指数普遍大于0.5,表明以化学风化为主,且风化趋势自下而上呈递减趋势。通过对比中国东南部主要河流沉积物的黏土矿物组成,认为钱塘江下切河谷全新世沉积物的黏土矿物组成具有较好的物源指示意义: 全新世 Ⅰ 段(即古河口湾和河漫滩)沉积物主要来自钱塘江上游,特征黏土矿物为高岭石,河口外物质贡献不大;Ⅱ 段(即现代河口湾和近岸浅海)沉积物包含较多蒙脱石,表明不仅包括钱塘江上游物质,河口外长江物质也开始进入钱塘江河口。黏土矿物中,高岭石对气候有较好的指示作用:中全新世高岭石含量达到最高值,反映气候最为湿热,化学风化程度最高;晚全新世含量逐渐降低,反映气候逐渐回冷,化学风化强度降低。  相似文献   

7.
通过X射线衍射系统分析了杭州湾地区SE2孔全新世沉积物的黏土矿物组成,结果显示研究层段黏土矿物主要由伊利石、绿泥石、高岭石和蒙脱石组成;伊利石结晶度较好,化学风化指数普遍大于0.5,表明以化学风化为主,且风化趋势自下而上呈递减趋势。通过对比中国东南部主要河流沉积物的黏土矿物组成,认为钱塘江下切河谷全新世沉积物的黏土矿物组成具有较好的物源指示意义: 全新世 Ⅰ 段(即古河口湾和河漫滩)沉积物主要来自钱塘江上游,特征黏土矿物为高岭石,河口外物质贡献不大;Ⅱ 段(即现代河口湾和近岸浅海)沉积物包含较多蒙脱石,表明不仅包括钱塘江上游物质,河口外长江物质也开始进入钱塘江河口。黏土矿物中,高岭石对气候有较好的指示作用:中全新世高岭石含量达到最高值,反映气候最为湿热,化学风化程度最高;晚全新世含量逐渐降低,反映气候逐渐回冷,化学风化强度降低。  相似文献   

8.
为揭示青藏高原东北缘早渐新世—早中新世气候环境演化及干旱化事件,采用X射线衍射(XRD)、扫描电子显微分析(SEM)等现代测试技术,对甘肃兰州盆地早渐新世—早中新世沉积物中粘土矿物的微观形貌、相对含量、V(Ill+Chl)/V(Sme)比值等参数进行了系统研究。结果表明,早渐新世—早中新世沉积物中粘土矿物主要有伊利石、绿泥石、蒙脱石以及少量的伊-蒙混层粘土矿物,指示该时间段气候总体以干旱为特征,局部出现相对温暖潮湿的气候。根据粘土矿物相对含量及V(Ill+Chl)/V(Sme)比值变化特征将兰州地区早渐新世—早中新世的气候环境演化划分为以下4个阶段:(Ⅰ)31.5~28.8 Ma相对温干偏湿的气候阶段;(Ⅱ)28.8~26.2 Ma相对冷干的气候阶段;(Ⅲ)26.2~22.1 Ma相对温暖潮湿的气候阶段;(Ⅳ)22.1~16.5 Ma相对温干偏湿的气候阶段。扫描电子显微分析表明,在相对温暖潮湿的时期,粘土矿物溶蚀较明显;在相对干旱的时期,粘土矿物表现显著的物理风化特征。以上粘土矿物学特征所揭示的阶段性干旱可能与青藏高原的阶段性隆升相对应。  相似文献   

9.
Neoformed minerals in shallow fault rocks are increasingly recognized as key to the behavior of faults in the elasto-frictional regime, but neither the conditions nor the processes which wall-rock is transformed into clay minerals are well understood. Yet, understanding of these mineral transformations is required to predict the mechanical and seismogenic behavior of faults. We therefore present a systematic study of clay gouge mineralogy from 30 outcrops of 17 low-angle normal faults (LANF's) in the American Cordillera to demonstrate the range and type of clay transformations in natural fault gouges. The sampled faults juxtapose a wide and representative range of wall rock types, including sedimentary, metamorphic and igneous rocks under shallow-crustal conditions. Clay mineral transformations were observed in all but one of 28 faults; one fault contains only mechanically derived clay-rich gouge, which formed entirely by cataclasis.Clay mineral transformations observed in gouges show four general patterns: 1) growth of authigenic 1Md illite, either by transformation of fragmental 2M1 illite or muscovite, or growth after the dissolution of K-feldspar. Illitization of fragmental illite–smectite is observed in LANF gouges, but is less common than reported from faults with sedimentary wall rocks; 2) ‘retrograde diagenesis’ of an early mechanically derived chlorite-rich gouge to authigenic chlorite–smectite and saponite (Mg-rich tri-octahedral smectite); 3) reaction of mechanically derived chlorite-rich gouges with Mg-rich fluids at low temperatures (50–150 °C) to produce localized lenses of one of two assemblages: sepiolite + saponite + talc + lizardite or palygorskite +/− chlorite +/− quartz; and 4) growth of authigenic di-octahedral smectite from alteration of acidic volcanic wall rocks. These transformation groups are consistent with patterns observed in fault rocks elsewhere. The main controls for the type of neoformed clay in gouge appear to be wall-rock chemistry and fluid chemistry, and temperatures in the range of 60–180 °C.  相似文献   

10.
We employed X-ray diffraction methods to quantify clay mineral assemblages in the Indus Delta and flood plains since ~ 14 ka, spanning a period of strong climatic change. Assemblages are dominated by smectite and illite, with minor chlorite and kaolinite. Delta sediments integrate clays from across the basin and show increasing smectite input between 13 and 7.5 ka, indicating stronger chemical weathering as the summer monsoon intensified. Changes in clay mineralogy postdate changes in climate by 5–3 ka, reflecting the time needed for new clay minerals to form and be transported to the delta. Samples from the flood plains in Punjab show evidence for increased chemical weathering towards the top of the sections (6–< 4 ka), counter to the trend in the delta, at a time of monsoon weakening. Clay mineral assemblages within sandy flood-plain sediment have higher smectite/(illite + chlorite) values than interbedded mudstones, suggestive of either stronger weathering or more sediment reworking since the Mid Holocene. We show that marine records are not always good proxies for weathering across the entire flood plain. Nonetheless, the delta record likely represents the most reliable record of basin-wide weathering response to climate change.  相似文献   

11.
Clay mineralogy and major-element geochemistry of 35 surface sediment samples collected in 21 major to moderate rivers of Luzon, Philippines are used to evaluate the present chemical weathering process. The clay mineral assemblage consists mainly of smectite (average 86%) with minor kaolinite (9%) and chlorite (5%) and very scarce illite (1%), and does not show strong island-wide differences. The major element results of both bulk and clay-fraction sediments indicate that the formation of clay minerals is accompanied by leaching of Ca and Na first and of Fe and Mn thereafter during the chemical weathering process. A low-moderate chemical weathering degree of bulk sediments and a moderate-intensive degree of clay-fraction sediments are obtained in Luzon rivers based on proxies of chemical index of alteration (CIA) and smectite crystallinity. It is suggested that the majority of andesitic–basaltic volcanic and sedimentary rocks along with the tectonically active geological setting and sub-tropical East Asian monsoon climate are responsible for the predominance of smectite in the clay mineral assemblage.  相似文献   

12.
Early Jurassic climate is characterized by alternating cold and warm periods highlighted by studies based notably on oxygen isotopes measured on belemnite guards and other marine invertebrate shells. These climatic changes include changes in the hydrological cycle, and consequently weathering and runoff conditions. In order to clarify the erosion and weathering conditions during the Pliensbachian, this study determined the mineralogical composition of the clay fraction of 132 samples taken from the entire stage drilled in the Llanbedr (Mochras Farm) borehole (Cardigan Bay Basin). The clay mineral assemblages are composed of various proportions of chlorite, illite, illite/smectite mixed‐layers (R1 I–S), smectite and kaolinite, with possibly occasional traces of berthierine. The occurrence of abundant smectite indicates that the maximum burial temperature never exceeded 70°C. Consequently, clay minerals are considered mainly detrital, and their fluctuations likely reflect environmental changes. The variations in the proportions of smectite and kaolinite are opposite to each other. Kaolinite is particularly abundant at the base of the jamesoni Zone, in part coinciding with the δ13C negative excursion corresponding to the Sinemurian/Pliensbachian Boundary Event, and through the davoei Zone, whilst smectite is abundant in the upper part of jamesoni and base of ibex zones and through the subnodosus/gibbosus subzones of the margaritatus Zone. The kaolinite‐rich intervals reflect an intensification of hydrolysis and an acceleration of the hydrological cycle, while the smectite‐rich intervals indicate a more arid climate. The spinatum Zone is characterized by a distinct clay assemblage with abundant primary minerals, R1 I–S, kaolinite reworked from previously deposited sediments or from Palaeozoic rocks, and probably berthierine originating from contemporaneous ironstone‐generating environments of shallower waters. This mineralogical change by the end of the Pliensbachian likely reflects a transition from a dominant chemical weathering to a deeper physical erosion of the continent, probably related to a significant sea‐level fall consistent with a glacio‐eustatic origin.  相似文献   

13.
我国不同气候带黄土中粘土矿物组合特征分析   总被引:11,自引:1,他引:10  
在兰州黄土和下蜀黄土中粘土矿物的X衍射分析基础上,对我国不同纬度和气候带的五个黄土剖面(点)中的粘土矿物组合和空间分布进行了对比分析,并探讨了与古气候的关系。结果表明,黄土中粘土矿物组合具有明显的地带性特征。从西北到东南,随着纬度的逐渐降低,黄土中的粘土矿物组合也发生有规律的变化。主要表现为绿泥石含量的逐渐减少和蛭石含量的逐渐增多。位于温带半干旱区的兰州黄土以伊利石和绿泥石为主要粘土矿物,而位于亚热带湿润区的大港下蜀黄土则以伊利石和蛭石为主要粘土矿物。黄土中含有较多量的绿泥石可作为黄土母质堆积后干冷气候和微弱风化的标志,而蛭石和蛭石/绿泥石混层矿物含量的增加指示了风化强度的增强。因此,黄土粘土矿物组合特征不仅反映物源区古环境信息,而且指示了黄土堆积期后的生物气候环境。  相似文献   

14.
Wadi Queih basin hosts a ~2,500-m thick Neoproterozoic volcanoclastic successions that unconformably lie over the oldest Precambrian basement. These successions were deposited in alluvial fan, fluviatile, lacustrine, and aeolian depositional environments. Diagenetic minerals from these volcaniclastic successions were studied by X-ray diffractometry, scanning electron microscopy, and analytical electron microscopy. The diagenetic processes recognized include mechanical compaction, cementation, and dissolution. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-filling clay cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cement and feldspar grains. In addition to calcite, several different clay minerals including kaolinite, illite, and chlorite with minor smectite occur as pore-filling and pore-lining cements. Chlorite coating grains helps to retain primary porosity by retarding the envelopment of quartz overgrowths. Clay minerals and their diagenetic assemblages has been distinguished between primary volcaniclastics directly produced by pyroclastic eruptions and epiclastic volcaniclastics derived from erosion of the pre-existing volcanic rocks. Phyllosilicates of the epiclastic rocks display wider compositional variations owing to wide variations in the mineralogical and chemical compositions of the parent material. Most of the phyllosilicates (kaolinite, illite, chlorite, mica, and smectite) are inherited minerals derived from the erosion of the volcanic basement complex, which had undergone hydrothermal alteration. Smectites of the epiclastic rocks are beidellite–montmorillonite derived from the altered volcanic materials of the sedimentary environment. Conversely, phyllosilicate minerals of the pyroclastic rocks are dominated by kaolinite, illite, and mica, which were formed by pedogenetic processes through the hydrothermal influence.  相似文献   

15.
To obtain a better understanding of climate change in south China in the Quaternary, a clay mineralogical study was undertaken on the red earth profile at Jiujiang, using X‐ray diffraction (XRD) and particle‐size distribution analysis methods. The XRD results showed that the clay minerals of the Jiujiang red earth were mainly mixed‐layer illite–smectite (I/S), illite, kaolinite and vermiculite, with trace amounts of mixed‐layer kaolinite–smectite (K/S). Changes in clay mineral composition displayed a trend of three‐stage evolution. The higher mixed‐layer I/S clays and kaolinite contents in the lower portion suggest extremely warm and humid climates over the period c. 700 to c. 350 ka ago. A gradual decrease in I/S clays and kaolinite reveals a gradual climate change from warm/humid to cool/dry during the period c. 350 to c. 130 ka ago. The higher illite and vermiculite contents indicate a relatively cool and dry climate during the period since c. 130 ka ago. The particle‐size distribution pattern of the upper section was similar to that of the Xiashu loess, while that of the middle to lower section was similar to those of fluvially reworked red earth. A rapid increase in the abundance of large grain‐size components at 2.6 m depth indicates an intensification of the winter monsoon and a cool and dry climate during the period, in good agreement with results from the clay mineral composition and homogeneous structure. The red earth sequences in south China could probably be used to test the response of tropical to subtropical regions to global climate changes.  相似文献   

16.
Alluvial fans are one of the most important landforms in geomorphological and paloenvironmental studies. The objective of this study was the application of clay mineral assemblages and micromorphological properties of the studied paleosols in the geomorphic surfaces of an alluvial fan in the eastern Isfahan as proxies for paleoenvironmental and paleoclimatic changes. Micromorphology, X-ray diffraction, and scanning electron microscopy approaches were used to study the representative pedons. The results indicated that the illuviation process in the calcareous soils of the arid regions of the eastern Isfahan was probably in response to Quaternary moist conditions. There was no significant difference between clay coating properties of the studied relict and buried paleosols. Clay mineralogical study suggested that kaolinite and illite were inherited from the parent materials, while smectite and palygorskite were formed in the soil environment. Paleoargillic horizon was characterized by smectite and calcic (especially the calcrete) horizons were dominated by palygorskite. Palygorskite was accumulated by both neoformation and illuviation processes. High clay content, high intensity of smectite peak, and activity of the illuviation process in paleoargillic horizon demonstrated the seasonality of climate (rainfall) even in the moist periods of Quaternary in Central Iran. Clay mineralogical assemblages suggested a trend of increasing environmental aridity in the study area. This study, therefore, highlighted the role of clay mineralogical investigations in arid lands’ geomorphological and paleoenvironmental researches.  相似文献   

17.
Many physico-chemical variables like rock-type, climate, topography and exposure age affect weathering environments. In the present study, an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering profiles in west coast of India, which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (<200 cm rainfall) are studied using X-ray diffraction technique. In the west coast, 1:1 clays (kaolinite) and Fe—Al oxides (gibbsite/goethite) are dominant clay minerals in the weathering profiles while 2:1 clay minerals are absent or found only in trace amounts. Weathering profiles in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite. Fe—Al oxides are either less or absent in clay fraction. The kaolinite—smectite interstratified mineral in Banasandra profiles are formed due to transformation of smectites to kaolinite, which is indicative of a humid paleoclimate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type. Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering. Mineral alteration reactions proceed through different pathways in water rich and water poor environments.  相似文献   

18.
This study collected the early Oligocene to middle Miocene sediments from the Gerze Basin of Tibet, and used X-Ray diffraction (XRD) and Scanning Electron Microscope (SEM) to discuss their clay mineralolgy, clay indices, better understand the clay mineralogy and its paleoclimatic significance. The results show that clay minerals of the Gerze Basin sediments are mainly composed of iilite and chlorite, with minor amounts of smectite and kaolinite, and their relative content varies along the section. Variations of relative contents and clay indices suggest that the Gerze Basin has experienced three-stage evolution of paleoclimate: I ) high ilUte and chlorite contents, with fluctuant smectite and low (I+Ch)/(K+S) ratio, indicative of a dominant seasonal arid climate from the early Oligoeene to late Oligocene; Ⅱ) higher illite and chlorite contents and larger (I+Ch)/(K+S) ratio but absence of kaolinite, indicating a colder and drier climate from the late Oligocene to early Miocene; Ⅲ) high iilite and chlorite contents with fluctuant (I+Ch)/(K+S) ratios and occasional occurrence of kaolinite, suggesting that the climate became warmer and more humid compared with that of stage Ⅱ in the mid-Miocene. These conclusions were also reinforced by the clay morphology, which suggests that physical weathering dominated in stage Ⅱ, while relatively strong chemical weathering was dominant in stages Ⅰ and Ⅲ Clay minerals of the sediments mainly consist of illite and chlorite, indicating that the source rock played a significant role in clay origin. It is inferred that global cooling and the enhancement of denudation and obstruction of northward moisture due to the uplift of the Qinghai-Tibet Plateau were responsible for the provenance of iUite and chlorite under weak chemical weathering. Though the Qinghai-Tibet Plateau reached a certain elevation by the mid-Miocene, yet the mid-Miocene widespread warming might have largely impacted the Gerze climate.  相似文献   

19.
苏北盆地粘土矿物转化模式与古地温   总被引:16,自引:0,他引:16  
以苏北盆地为例,系统研究了火成岩发育区粘土矿物组合特征及其控制因素;建立了粘土矿物转化模式;根据粘土矿物成岩演化特点,进行古地温分析。研究表明,苏北地区粘土矿物的分布主要受埋藏成岩作用、岩浆侵入、母质来源三种因素的影响,发育四种类型的粘土矿物组合和三种粘土矿物转化模式;火山碎屑岩母岩区和基性岩浆侵入区具有特殊的粘土矿物组合和成岩演化模式,前者以富含蒙皂石矿物为特点;后者出现高岭石与伊/蒙有序间层矿物共生组合,并具有不连续的演化序列;苏北盆地短有序I/S矿物出现于镜质组反射率 0.5 %~ 0.5 5 %的深度,伊/蒙间层矿物转变成伊利石在镜质组反射率 0.75 %~ 0.8%,可以用于热成熟度和古地温的估算;而蒙皂石消失的界面则不具有指标意义  相似文献   

20.
Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite–kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000–6500 yr B.P. and 3800–? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400–4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号