首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Sediments are considered as suitable matrices to study the contamination levels of aquatic environment since they represent a sink for multiple contaminant sources. In this study, the influence of sediment characteristics on the distribution of polycyclic aromatic hydrocarbons (PAHs) and its potential risk in euryhaline, freshwater and humic aquatic bodies of Douglas/Stubbs creek, Ikpa River and Eniong River, respectively, were investigated. The level of PAHs in sediment was quantified using GC–MS, while sediment properties including total organic carbon (TOC) content and grain size were determined by the wet oxidation and hydrometer methods, respectively. The results revealed that the total levels of PAHs in sediment varied significantly between the euryhaline, freshwater and humic freshwater ecosystems. In Ikpa River freshwater ecosystem, a total PAHs load of 1055.2 ng/g was recorded with the suites concentration ranging from 13.0 ng/g (for acenaphthylene) to 161 ng/g (for pyrene). The humic ecosystem of Eniong River had a total PAH load of 11.06 ng/g, while the suites level recorded ranged from 0.04 ng/g for acenaphthene to 2.65 ng/g for chrysene. The total level of PAHs detected in the euryhaline Douglas/Stubbs creek was 14.47 ng/g, and suite concentrations varied between 4.27 ng/g for naphthalene and 5.13 ng/g for acenaphthylene. This shows variation in quantity and quality of PAH contaminants with the nature of ecosystems. It implies complex and diverse contamination sources as well as different capabilities to recover from PAH contamination. Correlation analysis has shown that sediment particle and TOC content influenced PAHs burden in bottom sediments, but the effects varied with the molecular weight of PAHs and the nature of the ecosystems. The TOC was the most significant determinant of PAHs load and distribution in sediment of the freshwater Ikpa River and euryhaline Douglas/Stubbs but had little or no influence in the humic sediment of Eniong River, while the influence of particle size was generally indefinite but slightly associated with PAHs accumulation in the euryhaline sediment. Generally, the total PAH levels (11.0–1055.2 ng/g) recorded were low and below the allowable limit for aquatic sediments. The ecological risk assessment revealed that these levels were lower than the effects range low and effects range medium values. This indicates no acute adverse biological effect although the accumulation of PAHs in freshwater ecosystem of Ikpa River may pose ecological risks as most of the carcinogenic PAH suites had relatively high pollution indices compared to other ecosystem types studied.  相似文献   

2.
This work reports the historical trends and sources of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) in two 210Pb dated sediment cores extracted from the central mud areas of Bohai Sea (Bohai). The TOC/TN ratio of the bulk organic matter (OM) and the composition of the n-alkanes suggest that the sedimentary organic matter was of mixed marine and terrigenous sources. The coarser sediment grain size and decreasing C/N ratios since ∼1976 could be attributed to the relocation of the Yellow River mouth causing a decreased influence of Yellow River derived sediments and associated OM into the central Bohai. The concentration of total 16 PAHs in the two cores ranged from 34.2-202 ng/g (mean, 91.5) for BC1, and from 53.3-186 ng/g (mean, 103) for BC2, with a high abundance of 2-3 ring PAHs. Perylene in the two cores mainly originated from terrigenous sources via riverine discharge and thus could be potentially related to changes in the sediment load from the Yellow River into the Bohai over time. Petroleum inputs could be revealed by ratios of methylphenanthrenes to phenanthrene (MP/P) and the patterns of more stable geochemical biomarkers (hopanes and steranes) along the two cores, in addition to the presence of unresolved complex mixtures (UCM) in the surface layers. Source diagnostic ratios of PAHs indicated a pyrogenic origin from biomass and coal combustion with a minor petroleum contribution. Downcore trends of compositional PAHs profiles were in agreement with the socio-economic development in China in the past decades. This temporal variation of sedimentary PAHs can also reflect a different evolution stage of energy structure in China as compared with those of the western developed countries.  相似文献   

3.
This is a comprehensive study of the composition, origin and sources of specific polycyclic aromatic hydrocarbons (PAHs) in sediments of mangrove estuary in the western part of Peninsular Malaysia. Mangrove sediments were analyzed for 17 PAHs by gas chromatography–mass spectrometry. Total PAH concentrations in the sediments ranged from 20 to 112 ng/g on a dry-weight basis. High molecular weight PAHs were abundant in the sediments. Parent PAH ratios revealed that pyrogenic input has important contribution to the sedimentary PAHs. Ratios of alkylated PAHs indicate that the sedimentary PAHs were influenced by petrogenic PAHs, which implies that petrogenic input has contribution to the sedimentary PAHs but that it is not a major factor in distribution of PAHs within the estuary. Combustion-derived PAHs show a positive and very strong correlation with total PAHs (R 2 = 0.926, p < 0.05). Total methylphenanthrenes show very weak correlation with total PAHs (R 2 = 0.0928, p < 0.05). The PAH concentrations were found to increase with distance from the upstream of the estuary to the coastal area of the Straits of Malacca. For the assessment of sediment contamination using biological thresholds, none of the individual studied PAH compounds exceeded the values of the effect range low–effect range median guideline and the threshold effects level–probable effects level guideline. This study demonstrates that the sediments of the mangrove ecosystem facing the Straits of Malacca and Sumatra are influenced by anthropogenic PAH inputs as a result of human activities such as biomass burning, vehicle emissions and boating activities.  相似文献   

4.
The concentrations of typical organochlorine pesticides (OCPs) (DDTs, HCHs, PCP-Na, and HCB) were measured to understand distribution and source of OCPs in surface and columnar sediments of Poyang Lake in 2006. And OCPS concentrations in surface sediment in 2017 were made a comparison with those in 2006 at several same sampling sites. OCPs showed higher concentrations in main stream than in river mouths (entrance of river flow into lake) of the lake. The average concentrations of HCHs and DDTs were 4.63 ± 3.86 and 20.15 ± 26.86 ng/g in surface sediments in 2006, respectively. Concentrations of OCPs in 2017 were lower than in 2006, such as HCHs average 1.98 ± 2.04 ng/g and DDTs average 4.87 ± 1.48 ng/g in 2017, indicating historical residual and degradation. The primary isomers of HCHs and DDTs in the lake were α-HCH, γ-HCH and p,p′-DDD, respectively. HCHs were from historical residual and lindane application. DDTs were from historical residual. PCP-Na total concentrations in surface sediment were 77.36 ng/g in 2006 and 44.04 ng/g in 2017. The concentration of HCB residues in surface sediment was 0.92 ± 0.90 ng/g in 2006 and 0.42 ± 0.38 ng/g in 2017. The concentrations of OCPs in columnar sediments showed annual variations, and the peak concentrations occurred in 1953, 1961, 1974, 1982, and 1995, showing close relations with onset of production OCPs pesticide in 1950s and its later prohibition in 1980s and a large number agricultural cultivated land decrease in 1990s in China. The concentrations of HCB in columnar sediments were average 2.33 ± 1.26 ng/g. OCPs of columnar sediments were from historical residues and lindane input. The main contamination of OCPs was PCP-Na and p,p′-DDD in Poyang Lake. On the whole, the combination of surface samples (0–5 cm in depth) and columnar samples (0–38 cm in depth) in a single study would give insight into OCPs pollution levels in different years (temporal resolution) and in different regions (spatial resolution) in Poyang Lake.  相似文献   

5.
In the present study, sediments and biotas from two freshwater lakes in Yangze delta area were collected and analyzed for polybrominated diphenyl ethers (PBDEs) and methoxylated PBDEs (MeO–PBDEs). The concentrations of PBDEs in sediments and biotas ranged from 0.41 to 5.8 ng/g dry weight and from 4.6 to 100 ng/g lipid weight, respectively, while those of MeO–PBDEs were much lower (sediment: <LOQ-0.014 ng/g dry weight, biota: <LOQ-2.1 ng/g lipid weight). The levels of both brominated substances in sediments and biotas were in the moderate to low range compared with other studies. Different BDE congeners were found between two lakes probably due to the different exogenous sources and metabolic stages. Similar occurrence of higher brominated congeners (e.g., BDE-209) in sediments and biotas indicated sediments as a possible source of PBDEs for biotas. The different contribution of lower and higher brominated congeners between sediments and biotas may be due to the combined effect of biotransformation and bioavailability.  相似文献   

6.
This study investigated the contamination levels and profiles of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs) including dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in fish from the Niyang River, Tibetan Plateau. The total concentrations of ∑PCB, ∑PBDE and ∑OCP were in the range of 0.246–1.056 ng/g (mean 0.540 ± 0.289 ng/g), 0.280–2.220 ng/g (mean 0.914 ± 0.643 ng/g) and 7.24–13.80 ng/g (mean 10.70 ± 2.31 ng/g), respectively. The total mercury concentration (HgT) in fish ranged from 85 to 217 ng/g dw with an average of 129 ng/g dw, and the concentrations of methyl mercury (MeHg) ranged from 61 to 160 ng/g dw with an average of 102 ng/g dw. The proportion of MeHg contributed to 66–91 % (average 80 %) of HgT for all samples, indicating that organic mercury was the predominant form of mercury in fish muscle. The results revealed that the fish from the Niyang River were contaminated with various persistent toxic pollutants and the potential influencing factors on the bioaccumulation concentration in fish were analyzed using Pearson’s correlation analysis.  相似文献   

7.
Toxic organic compounds in wastewater are serious threats for both human and environment healthy states. This study investigates the potential sources of surface water, sediment and groundwater pollution by polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) as discharged by wastewater into the River of Oued El bey in northeastern Tunisia. Analysis indicates that the concentration of PAHs and PCBs are high in wastewater and vary from 0.37 to 0.83 mg/L and from 0.28 and 1.18 mg/L, respectively. The spatial distribution of PAHs and PCB in surface water showed a variation between 0.37 to 9.91 mg/L and between 0.1 to 0.47 mg/L, respectively. However, the quality of surface water is changed after wastewater evacuation at Oued Tahouna. The determination of PAH and PCB pollutants in groundwater shows a great interest in the development of water resources. The Concentration of these pollutants varying from 0.0204 to 1.93 mg/L and from 0.0052 to 0.196 mg/L, respectively. For PAH, analysis reveals also that naphtelene, fluorene, anthracene and chrysene are the most detected PAHs compounds in water and sediment samples while benzo[b]fluoranthene and benzo[a]pyrene are less present and in trace level. Higher concentrations of PAHs and PCBs are found in samples taken close to industrial areas of Bouargoub and Soliman, and wastewater discharge locations in Soliman. Analysis of the spatial distribution of PAHs and PCBs clearly link their higher concentration in water and sediments to wastewater and manufacturing discharges in the study area. In surface sediment, the organic pollutants are present. The cluster analysis for organic pollutants in different state and different matrix highlight a relationship between the wastewater evacuation and the water qualities which confirmed the direct response of the pollution sources on the surface water and groundwater organic pollution quality.  相似文献   

8.
Concentration, distribution, and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of Laizhou Bay, China. Total PAH concentrations ranged from 97.2 to 204.8 ng/g, with a mean of 148.4 ng/g. High concentrations of PAHs were found in the fine-grained sediments on both sides of the Yellow River estuary (YRE). In contrast, low levels of PAHs were observed in relatively coarse grain sediments, suggesting hydrodynamics influence the accumulation of sedimentary PAHs. The YRE and its adjacent area is the main sink for Yellow River-derived PAHs. Both PAH isomer ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were applied to apportion sources of PAHs. Results indicated that both pyrogenic and petrogenic PAH sources were important. Further PCA/MLR analysis showed that the contributions of coal combustion, petroleum combustion and a combined source of spilled oil and biomass burning were 41, 15 and 44%, respectively. From an ecotoxicological viewpoint, the studied area appears to have low levels of PAH pollution.  相似文献   

9.
The sources and historical deposition of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in dated sediment cores from the Pichavaram mangrove–estuarine complex. The ΣPAH flux in mangrove and estuarine sediments was 0.064 ± 0.031 μg/cm2/yr and 0.043 ± 0.020 μg/cm2/yr, respectively. The PAH flux in sediments increased up-core, coinciding with rapid urbanization since the 1970s. The flux showed a decrease in recent years (since 1990), coinciding with less riverine discharge, and perhaps more effective implementation of environmental regulations. The sediments were dominated by low molecular weight PAHs, suggesting anthropogenic input. Ratios of specific PAH isomer pairs suggested a greater input of petrogenic vs. pyrogenic derived PAHs. Notably, the deposition of high molecular weight PAHs increase in mangrove surface sediments was due to lignite and firewood combustion. Because of their overall low concentration in sediments it is unlikely these PAHs pose an immediate ecological hazard.  相似文献   

10.
Damming of the North Anna River in 1972 created Lake Anna, a cooling water source for the Dominion nuclear power plant as well as a popular recreation site in Spotsylvania and Orange counties, Virginia, USA. Previously dated (210-Pb) sediment cores from seven locations within the lake and three locations in the adjoining Waste Heat Treatment Facilities (WHTF) were analyzed for trace metals (Al, Ba, Zn, Cd, Cu, Fe, Mn and Pb) and polychlorinated biphenyls (PCBs) to examine the environmental evolution of the reservoir system. The reservoir has a history of mining activities in its watershed and unusually elevated concentrations of PCBs were found in fish tissues from previous studies. Therefore, dated sediment cores provided the framework for both the temporal and spatial analysis of possible sources and flux histories for both trace metals and PCBs. The trace metals results suggest that, though the upper reaches are relatively less impacted, the old mine tailings from the now ceased mining activities in the watershed of Contrary Creek tributary continue to dominate the sediment chemistry of the lower portion of the lake basin, signified by sediment enrichment of Pb, Cd, Cu, and Zn. Lagoon-2 of the WHTF also seems to be receiving unusually high loadings of Cd (12.5 ± 1.07 μg/g) that is probably associated with waste materials from the nuclear power plant that maintains the lagoons. PCB sediment concentrations were relatively low in the lower sections of the basins with values typically being <3.5 ng/g. The upper reaches of the basin had several PCB hotspots, with the surface sediments of Terry’s Run tributary having values as high as 53.13 ng/g. The spatial distribution of PCBs seems to suggest the upper reaches of the basin as the probable source, with the unusually high concentrations near bridges suggesting a possible link between the PCBs and old bridge fill materials. The oldest lacustrine sediments also had relatively high trace metals and PCB values signifying a probable role of soil disruption and sediment reconcentration during reservoir construction.  相似文献   

11.
Concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of the Yellow River Estuary (YRE). The isobath-parallel tidal and residual currents play important roles in the variation of PAH distribution, such that the contamination level of PAHs in fine-grained sediments is significantly higher than in the relatively coarse grain size sediments. Both diagnostic ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were used to apportion sources of PAHs. The results revealed that pyrogenic sources are important sources of PAHs. Further analysis indicated that the contributions of coal combustion, traffic-related pollution and mixed sources (spills of oil products and vegetation combustion) were 35, 29 and 36 %, respectively, using PCA/MLR. Pyrogenic sources (coal combustion and traffic-related pollution) contribute 64 % of anthropogenic PAHs in sediments, which indicates that energy consumption could be a predominant factor in PAH pollution of YRE. Acenaphthylene and acenaphthene are the two main species of PAHs with more ecotoxicological concern in YRE.  相似文献   

12.
To determine the degree of hydrocarbon contamination and the contribution of local petroleum industries to contaminant loadings in sediments from the Beiluohe River, China, 12 surface sediment samples were collected for geochemical analysis in 2005. Sediment samples were extracted by organic solvents, separated by silica gel column chromatography and the profiles of n-alkanes, biomarkers and polycyclic aromatic hydrocarbons (PAHs) in sediments were analyzed by gas chromatography with flame ionization detector and gas chromatography/mass spectroscopy. Concentrations of total hydrocarbons in the sediments varied from 12.1 to 3,761.5 μg g−1 dry wt, indicating that most sediments in Beiluohe River was only slightly to moderately contaminated by hydrocarbons. Concentrations of PAHs for six samples (sum of 16 isomers) varied from 17.7 to 407.7 ng g−1 dry wt and at present low levels of PAHs did not cause adverse biological effects in Beiluohe River sedimentary environment. PAH compositions, n-alkanes and biomarker profiles all suggested that there were different sources of contaminations in studied areas. n-Alkanes reflect two distinct sources: a fossil n-alkane series from crude oil at sites S40, S43, S87 and plantwax n-alkanes at sites S39 and S45. Judged by their PAH ratios, the sediments at site S15 were pyrolytic, sediments at S17 and S43 were petrogenic, and sediments at S39, S40 and S64 had a mixture source of pyrolytic and petrogenic.  相似文献   

13.
The burial characteristics and toxicity risks associated with n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in the riverine and estuarine sediments of the Daliao River watershed were investigated based on three sediment cores. The sum of the n-alkane and PAH concentrations, normalized to organic carbon (OC), ranged from 0.27 to 63.09 μg g?1OC?1 and 6.60 to 366.20 μg g?1OC?1, respectively. The features and the history of industrial activities, such as the oil and chemical industries and port activities near the river and estuary, resulted in different distributions and sources of hydrocarbons. The sources of pollution were identified based on n-alkane indexes and on diagnostic ratios of PAHs. The diagnostic ratios indicated that the n-alkanes were derived from both biogenic and petrogenic sources in different proportions and that the PAHs were derived primarily from petrogenic combustion sources. A hierarchical cluster analysis grouped the core samples into two clusters. The first cluster, river sediments, corresponded to industrial activities; the second cluster, estuarine sediments, corresponded to port shipping activities. The toxic potency of the PAHs in the cores was assessed in terms of toxic equivalents (TEQs) of dibenzo[a,h]anthracene and benzo[a]pyrene. The top layer of the sediment in the cores had a relatively high toxicity. The TEQ values for benzo(a)pyrene (TEQBaP) and dioxins (TEQTCDD) furnished a consistent assessment of the PAHs in the sediment cores.  相似文献   

14.
Sediment samples collected from the West Port, the west coastal waters of Malaysia, were analyzed by standard methods to determine the degree of hydrocarbon contamination and identify the sources of polyaromatic hydrocarbons (PAHs). Concentrations of PAHs in the port sediments ranged from 100.3 to 3,446.9 μg/kg dw. The highest concentrations were observed in stations close to the coastline, locations affected by intensive shipping activities and industrial input. These were dominated by high-molecular-weight PAHs (4–6 rings). Source identification showed that PAHs originated mostly pyrogenically, from the combustion of fossil fuels, grass, wood, and coal or from petroleum combustion. Regarding ecological risk estimation, only station 7 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the West Port.  相似文献   

15.
Concentrations, spatial distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency as priority pollutants were investigated in surface sediments of Bohai Bay, North China. Total concentrations of PAHs were in the range of 140.6–300.7 ng/g (dry wt), with an average of 188.0 ng/g. The three predominant PAHs were phenanthrene, acenaphthene and naphthalene. Sedimentary PAH concentrations of the north and central Bohai Bay were higher than those of the southern side of this bay. PAHs source analysis suggested that PAHs in most of the sediments were mainly from grass, wood and coal incomplete combustion. At other stations near the estuaries (Luanhe River Estuary and Chaohe River Estuary) or the oil drilling platform, both petrogenic and pyrogenic inputs were significant. The pyrogenic PAHs close to the oil drilling platform were mainly from petroleum combustion.  相似文献   

16.
Concentration and distribution of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) in surface sediments collected from five stations located along the southwest coast of India were investigated seasonally to assess whether there is insidious buildup of heavy metals. Spatial variation was in accordance with textural characteristics and organic matter content. The concentration of the metals in sediments of the study area followed the order: Zn > Cr > Ni > Cu > Pb > Cd > Hg. The use of geochemical tools and sediment quality guidelines to account for the magnitude of heavy metal contamination revealed high contamination in monsoon and impoverishment during post-monsoon. Estimated total metal concentrations in the present investigation were comparable with other studies; however, concentrations of Ni and Zn were higher than that of other coastal regions. Concentrations of metals in sediment largely exceed NOAA effects range:low (e.g., Cu, Cr, Hg) or effects range:median (e.g., Ni) values. This means that adverse effects for benthic organisms are highly probable.  相似文献   

17.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   

18.
Archaea have unique glycerol dialkyl glycerol tetraether (GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86. This research is to validate proposed GDGT-proxies for paleotemperature determination in the South China Sea (SCS). Samples were collected from core-top sediments (0–5 cm) in the northern SCS. Total lipids were extracted to obtain core GDGTs, which were identified and quantified using liquid chromatography-mass spectrometry (LC-MS). The abundance of isoprenoidal GDGTs (iGDGTs) ranged from 271.5 ng/g dry sediment to 1266.3 ng/g dry sediment, whereas the branched GDGTs (bGDGTs), supposedly derived from terrestrial sources, ranged from 22.2 ng/g dry sediment to 56.7 ng/g dry sediment. The TEX86-derived sea surface temperatures ranged from 20.9 °C in the coast (water depth < 160 m) to 27.9 °C offshore (water depth > 1000 m). TEX86-derived temperatures near shore (<160 m water depth) averaged 23.1 ± 2.5 °C (n = 4), which were close to the satellite-derived winter mean sea surface temperature (average 22.6 ± 1.0 °C, n = 4); whereas the TEX86-derived temperatures offshore averaged 27.4 ± 0.3 °C (n = 7) and were consistent with the satellite mean annual sea surface temperature (average 26.8 ± 0.4 °C, n = 7). These results suggest that TEX86 may record the sea surface mean annual temperature in the open ocean, while it likely records winter sea surface temperature in the shallower water.  相似文献   

19.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

20.
As a famous project in China, the water diversion from Yangtze River to Taihu Lake Project has impacts on the water quality of Taihu Lake, especially Gonghu Bay, which is the entrance of the diversion water and the drinking water source for Wuxi and Suzhou. To investigate contamination of the antibiotics in Gonghu Bay in the period of water diversion, 16 antibiotics in 14 water samples collected from Wangyu River and Gonghu Bay in China were analyzed by liquid chromatography–tandem mass spectrometry. The results indicated that the concentration of total antibiotics in Wangyu River and Gonghu Bay ranged from 1320 to 17,209 ng/L (mean: 3920?±?3841 ng/L). The average level of different antibiotics was tetracyclines (range 1082–15,310 ng/L, mean 3161?±?3479 ng/L)?>?quinolones (range 225–1325 ng/L, mean 463?±?276 ng/L)?>?sulfonamides (range n.d.–888 ng/L, mean 402?±?248 ng/L)?>?macrolides (range 12–17 ng/L, mean 14?±?2 ng/L), and levels of the detected antibiotics in Gonghu Bay were higher than that in Wangyu River, indicating that the antibiotics pollution in Gonghu Bay were much severer than Wangyu River. Ecological risk evaluation showed that in the Wangyu and Gonghu water, trimethoprim (TMP), sulfacetamide (SAAM), sulfamethoxypyridazine (SMP), and sulfamerazine (SMRZ) presented low ecological risk levels, chlortetracycline (CTC), tetracycline (TC), roxithromycin (ROM), and sulfamethoxazole (SMX) had medium level of risk, and oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP), and enrofloxacin (ENR) had high level of ecological risk. The total hazard quotient of antibiotic mixtures for each sample site indicated high risk of antibiotics in Wangyu River and Gonghu Bay. In summary, the water diversion could mitigate antibiotic pollution in Gonghu Bay to a certain degree. However, the risk of antibiotics in the Wangyu River and Gonghu Bay is still high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号