首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Soil losses and siltation of the hydrological system (watershed–dam) of K’sob were obtained using direct and indirect methods. The Wadi K’sob watershed of 1,484 km2, average slope of 0.14, and average elevation of 1,060 m is located in a semiarid climate. The average annual rainfall is 341 mm and the mean annual water discharge is 0.89 m3/s. Data from the Medjez gauging station located 6 km upstream of the dam, are the daily liquid flow and instantaneous concentrations of suspended sediments. Over a time period from 1973 to 2010, the relationship between water and sediment discharges is quantified by the equation: Q s?=?5.6 Q 1.31. Thus, in view of the availability data on a daily scale, the assessment of soil erodibility of the K’sob watershed was used to estimate specific soil losses of 203 t?km?2?year?1or 301,000 t eroded annually from the K’sob basin. The bathymetric measurements of the sediment volumes deposited in the K’sob dam, has quantified the annual siltation of 0.8 hm3, corresponding to an average erodibility of the K’sob watershed of 809 t?km?2?year?1. However, when adding the volume of sediment removed by the dredging operation and de-silting by the valves during heavy floods, the value of soil losses is 2,780 t?km?2?year?1. The indirect assessment of soil erodibility of the basin was obtained by applying two models: the quantitative geomorphological analysis (QGA) and PISA model (prediction of silting in the artificial reservoirs, in Italian: Previsioni dell’Interimento nei Serbatoi Artificiali) using physical and climatic factors in the watershed. The obtained results by QGA method underestimate specific soil losses of 524 t?km?2?year?1. The PISA model gives a value of 2,915 t?km?2?year?1, which is close to the value obtained by bathymetric measurements. This study concludes that PISA model is most suitable to estimate soil loss and siltation of the K’sob hydrological system.  相似文献   

2.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

3.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

4.
Drought is a complex phenomenon in meteorology and can affect agriculture. Its impacts vary greatly since they depend not only on the magnitude, timing, duration, and frequency of rainfall deficits but also on the differing responses of various plants to water stress. The essence of good drought management is to use this range of responses to the best advantage. Iran is one of the world’s largest and most productive suppliers of food and fiber. The objective of this study was, therefore, to gather and analyze standardized information on the Role of Early Warning Systems for Sustainable Agriculture for cereals and leguminous and industrial crops in Iran environmental zones. Annual average rainfall (mm year?1) and ETO (mm year?1) are 76.56 and 3001, respectively, in stations with very dry climate; 195.41 and 2249, respectively, in stations with dry climate; 343.9 and 1351, respectively, in stations with semi-dry climate; 583.8 and 1153, respectively, in stations with semi-humid climate; and 1272 and 949, respectively, in stations with humid climate. The maximum and minimum of annual average rainfall happened in Rasht (1337 mm year?1) and Zabol (57 mm year?1) stations, and the maximum and minimum for annual average ETO happened in Chabahar (3909.15 mm year?1) and Anzali harbor (890.6 mm year?1), respectively. Therefore, 13.63 % of stations have suitable conditions for crop productions and 86.37 % are in critical conditions.  相似文献   

5.
Watershed degradation due to soil erosion and sedimentation is considered to be one of the major environmental problems in Iran. In order to address the critical conditions of watershed degradation in arid and semiarid regions, a study based on the Modified Pacific Southwest Inter-Agency Committee (MPSIAC) model was carried out at Golestan watershed, northeast of Iran. The model information layers comprising nine effective factors in erosion and sedimentation at the watershed site were obtained by digitalization and spatial interpolation of the basic information data in a GIS program. These factors are geology, soil, climate, runoff, topography, land cover, land use, channel, and upland erosion. The source data for the model were obtained from available records on rainfall and river discharge and sediment, topography, land use, geology, and soil maps as well as field surveys and laboratory analysis. The results of the MPSIAC model indicated that 60.75 % (194.4 km2) and 54.97 % (175.9 km2) of the total watershed area were classified in the heavy sedimentation and erosion classes, and the total basin sediment yield and erosion were calculated as 4,171.1 and 17,813.4 m3 km?2 year?1, respectively. In the sensitivity analysis, it was found that the most sensitive parameters of the model in order of importance were topography (slope), land cover and use, runoff, and channel erosion (R 2?=?0.92–0.94), while geology, climate (rainfall), soil, and upland erosion factors were found to have moderate effect to the model output (R 2?=?0.74–0.59).  相似文献   

6.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   

7.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

8.
The aim of this study was to investigate temporal variation in seasonal and annual rainfall trend over Ranchi district of Jharkhand, India for the period (1901–2014: 113 years). Mean monthly rainfall data series were used to determine the significance and magnitude of the trend using non-parametric Mann–Kendall and Sen’s slope estimator. The analysis showed a significant decreased in rainfall during annual, winter and southwest monsoon rainfall while increased in pre-monsoon and post-monsoon rainfall over the Ranchi district. A positive trend is detected in pre-monsoon and post-monsoon rainfall data series while annual, winter and southwest monsoon rainfall showed a negative trend. The maximum decrease in rainfall was found for monsoon (? 1.348 mm year?1) and minimum (? 0.098 mm year?1) during winter rainfall. The trend of post-monsoon rainfall was found upward (0.068 mm year?1). The positive and negative trends of annual and seasonal rainfall were found statistically non-significant except monsoon rainfall at 5% level of significance. Rainfall variability pattern was calculated using coefficient of variation CV, %. Post-monsoon rainfall showed the maximum value of CV (70.80%), whereas annual rainfall exhibited the minimum value of CV (17.09%), respectively. In general, high variation of CV was found which showed that the entire region is very vulnerable to droughts and floods.  相似文献   

9.
Low-flow indices have been determined from long-term daily streamflow data for 13 catchments in Dongjiang Basin in southern China. The Brutsaert-Nieber method was applied to estimate catchment-scale effective groundwater parameters; representative values were 4.5?×?10?4 ms?1 for the hydraulic diffusivity; 3.19?×?10?5 m2 s?1/2 for the hydraulic desorptivity; 2.27?×?10?4 m s?1 for the hydraulic conductivity; and 0.2617 for the drainable porosity. The response constants correlate well with the total stream length and catchment area. Solutions of the linearised Boussinesq equation were used to guide the development of regional multivariate regression models for estimating low-flow indices from the catchment-scale effective parameters. Results showed that these catchments exhibit similar low-flow characteristics. The 7-day lowest average streamflows with return periods of 10 and 2 years (7Q10 and 7Q2) are highly correlated with the catchment-scale response constants. The low-flow ratio Q95/Q50 (ratio of daily streamflow exceeded 95 and 50% of the time, respectively) varied between 0.3 and 0.5, indicating a high proportion of groundwater in the streamflow. The advantage of the regional regression model is its conceptual basis and use of the catchment-scale effective parameters. The method has the potential to be applied to ungauged catchments for estimating low-flow statistics from stream length and catchment area.  相似文献   

10.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

11.
Measurements of groundwater-dissolved inorganic nitrogen (nitrate?+?nitrite?+?ammonia) and phosphate concentrations were combined with recent, radium-based, submarine groundwater discharge (SGD) fluxes and prior estimates of SGD determined from Darcy’s Law, a hydrologic model, and total recharge to yield corresponding SGD nutrient fluxes to Ninigret, Point Judith, Quonochontaug, and Winnapaug ponds, located in southern Rhode Island. Results range from 80 to279 mmol N m?2 year?1 and 4 to 15 mmol P m?2 year?1 for Ninigret, 48 to 265 mmol N m?2 year?1 and 4 to 23 mmol P m?2 year?1 for Point Judith, 31 to 62 mmol N m?2 year?1 and 1 to 2 mmol P m?2 y?1 for Quonochontaug, and 668 to 1,586 mmol N m?2 year?1 and 29 to 70 mmol P m?2 year?1 for Winnapaug ponds, respectively. On a daily basis, the SGD supply of dissolved inorganic nitrogen and phosphorus is estimated to represent ~1–6 % of the total amount of these nutrients in surface waters of Ninigret, Point Judith, and Quonochontaug ponds and up to 84 and 17 % for Winnapaug, respectively, which may reflect a greater SGD nutrient supply to this pond because of the proximity of fertilized golf courses. With regard to the total external input of these essential nutrients, SGD represents 29–45 % of dissolved inorganic nitrogen input to Ninigret, Point Judith, and Quonochontaug ponds and as much as 93 % for Winnapaug pond. For phosphorus, the contribution from SGD represents 59–85 % of the total external input for Ninigret, Point Judith, and Quonochontaug ponds and essentially all of the phosphorus input to Winnapaug pond. Estimated rates of primary productivity potentially supported by the average supply of dissolved inorganic nitrogen from SGD range from 10 g C m?2 year?1 for Ninigret, 13 g C m?2 year?1 for Point Judith, 4 g C m?2 year?1 for Quonochontaug, and as high as 84 g C m?2 y?1 for Winnapaug pond. The imputed SGD-derived rates of primary productivity represent 4–9 % of water column primary production for Ninigret, Point Judith, and Quonochontaug ponds, and 74 % for Winnapaug pond, a result that is reasonably comparable to several other coastal environments where estimates of SGD nutrient supply have been reported. The implication is that SGD represents an ecologically significant source of dissolved nutrients to the coastal salt ponds of southern Rhode Island and, by inference, other coastal systems.  相似文献   

12.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

13.
Much uncertainty exists in the phosphorus (P) cycle in the marshes of the intertidal zone. This study explored the P cycling in the two Suaeda salsa marshes [middle S. salsa marsh (MSM) and low S. salsa marsh (LSM)] of the Yellow River estuary during April 2008 to November 2009. Results showed seasonal fluctuations and vertical distributions of P in different S. salsa marsh soils, and variations in P content in different parts of plants due to water and salinity status. The N/P ratios of the different S. salsa were 9.87 ± 1.23 and 15.73 ± 1.77, respectively, indicating that plant growth in MSM was limited by N, while that in LSM was limited by both N and P. The S. salsa litter in MSM released P to the environment throughout the year, while that in LSM immobilized P from the environment at all times. The P absorption coefficients of S. salsa in MSM and LSM were very low (0.0010 and 0.0001, respectively), while the biological cycle coefficients were high (0.739 and 0.812, respectively). The P turnovers among compartments of MSM and LSM showed that the uptake amounts of roots were 0.4275 and 0.0469 g m?2 year?1 and the values of aboveground parts were 1.1702 and 0.1833 g m?2 year?1, the re-translocation quantities from aboveground parts to roots were 0.8544 and 0.1452 g m?2 year?1, the translocation amounts from roots to soil were 0.0137 and 0.0012 g m?2 year?1, the translocation quantities from aboveground living bodies to litter were 0.3157 and 0.0381 g m?2 year?1, and the annual return quantities from litter to soil were less than 0.0626 and ?0.0728 g m?2 year?1 (minus represented immobilization), respectively. P was an important limiting factor in S. salsa marshes, especially in LSM. S. salsa was seemingly well adapted to the low-nutrient condition and the vulnerable habitat, and the nutrient enrichment due to the import of N and P from the Yellow River estuary would be a potential threat to the S. salsa marshes.  相似文献   

14.
One of the most important challenges in global climate change research is balancing the carbon budget within the global carbon cycle. Carbon burial in sediments at the land–ocean interface has been difficult to quantify and model because it represents non-steady-state boundary conditions that are also affected by human activities. In this study, we document carbon burial rates in the Yangtze River (1.6–4.9 × 1012 gC year?1) and Hudson River (1.8–3.6 × 1010 gC year?1) estuaries and integrate our results with carbon burial rates determined by others in the world’s 25 largest river-estuarine systems (6–11 × 1013 gC year?1). Our results indicate that carbon burial in estuaries, bays, coves, lagoons, mud flats, marshes, mangroves, and other highly productive or protected low-energy areas at the land–ocean interface along the entirety of the world’s coastlines may serve as an unrecognized sink within the global carbon budget.  相似文献   

15.
Coastal marshes are known as organic matter producers. The goal of this work is to study tiller demography, standing biomass, and net aerial primary productivity (NAPP) in a Spartina densiflora coastal wetland, using a method applied to permanent sample plots located at two sites differing in topographic location, a regularly flooded zone [relative low marsh (LM)] and an irregularly flooded one [relative high marsh (HM)]. Measurements were made every 2 months during the 2005–2007 period. The annual NAPP was estimated to be 2,599?±?705 gDW m?2?year?1 for the HM and 2,181?±?605 gDW m?2?year?1 and 602?±?154 gDW m?2?year?1 for the first and second period of the LM populations, respectively, showing a seasonal pattern reaching maximum values in summer. The reduced NAPP values of the LM sites in the second year was associated with an extremely high precipitation period related to the 2007–2008 El Niño event.  相似文献   

16.
Groundwater discharge and non-point source (NPS) loading were evaluated along an urban reach of an eastern-slopes Rocky Mountains river (Bow River, Canada) to understand sources of water-quality impacts and baseflow. The discharge did not increase measurably over a 16-km reach. Groundwater in the river-connected alluvial aquifer was a mixture of river and prairie groundwater, with elevated chloride concentrations (average 379 mg L–1) from road salt. Alluvial groundwater was the major NPS of chloride discharging to the river. Although the mass-flux based estimates of groundwater discharge were small (mean 0.02 m3 s–1 km–1, SD = 0.04 m3 s–1 km–1, n?=?30), the associated chloride mass flux over 16 km was significant (equivalent to that discharged from the city’s largest wastewater-treatment-plant effluent). Although local groundwater baseflow was previously thought to contribute significantly to overwinter baseflow in this reach, little contribution was measured in this study. Low baseflow generation is consistent with long-term river discharge data that show almost all of the baseflow generation occurs in the Rocky Mountain reach. Thus, local watershed areas are important for water-quality protection, but climate change in the headwaters is most salient to long-term flow.  相似文献   

17.
Water quality in less-developed countries is often subject to substantial degradation, but is rarely studied in a systematic way. The concentration and flux of major ions, carbon, nitrogen, silicon, and trace metals in the heavily urbanized Bagmati River within Kathmandu Valley, Nepal, are reported. The concentrations of all chemical species increased with distance downstream with the exceptions of protons and nitrate, and showed strong relationships with population density adjacent to the river. Total dissolved nitrogen (TDN), dominated by NH4, was found in high concentrations along the Bagmati drainage system. The export of dissolved organic carbon (DOC) and TDN were 23 and 33 tons km?2 year?1, respectively, at the outlet point of the Kathmandu Valley, much higher than in relatively undeveloped watersheds. The cationic and silica fluxes were 106 and 18 tons km?2 year?1 at the outlet of the Bagmati within Kathmandu Valley, and 36 and 32 tons km?2 year?1 from the relatively pristine headwater area. The difference between headwaters and the urban site suggests that the apparent weathering flux is three times higher than the actual weathering rate in the heavily urbanized Bagmati basin. Fluxes of cations and silica are above the world average, as well as fluxes from densely populated North American and European watersheds. End-member composition of anthropogenic sources like sewage or agricultural runoff is needed to understand the drivers of this high rate of apparent weathering.  相似文献   

18.
Understanding the carbon dynamics in grassland is essential to precisely estimate global atmospheric carbon budget in response to climatic change. Eddy flux measurements were carried out during 2011 and 2012 to characterize seasonal and annual variability of carbon exchanges above a temperate meadow in eastern Inner Mongolia, China. The CO2 flux showed obvious diurnal variations and the monthly mean amplitudes of diurnal course followed June/July > August > May > September. The daily maximum NEE reached up to ?8.0 and ?7.7 g C m?2 for 2011 and 2012, respectively. CO2 uptake was mainly from May to August, with seasonal peaks of ?16.0 g C m?2 day?1 in both two years. Gross primary production (GPP) and ecosystem respiration (Re) were ?1,084.5, 987.1 g C m?2 year?1 in 2011, and ?1,123.3, 1,040.2 g C m?2 year?1 in 2012, respectively. The meadow acted as a stable carbon sink, with integrated net ecosystem exchange (NEE) of ?97.4 and ?83.1 g C m?2 year?1 for 2011 and 2012, respectively. Compared with 2011, the ecosystem assimilated more carbon and meanwhile respired even more, leading to a less carbon sequestration in 2012. PAR and leaf area index (LAI) dominated the seasonal variations in NEE, with PAR explaining 61–69 % of the variance in NEE as LAI maintaining the plateau during June to July. Harvest significantly decreased ecosystem carbon uptake. The interannual variability in GPP and Re resulted primarily from the variations in temperature and its effect on biomass growth.  相似文献   

19.
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change.  相似文献   

20.
Grasslands account for 40 % of the Chinese land area. About 80 % of the total grasslands are in the northern temperate zone. These grassland ecosystems provide goods and services to the local people and play an important role in the global carbon cycle. Remote sensing and ecosystem modeling approaches have been used to quantify the carbon budget of these grasslands. However, the intensive site measurements and meteorological data acquired in these ecosystems in the last few decades have not been adequately used to improve ecosystem model capabilities, in turn, better quantify their carbon budget. In this study an effort was made to examine the carbon budget and its spatial–temporal variation of the temperate grasslands in China from 1951 to 2007 using a process-based biogeochemistry model. It was found that the regional grasslands acted as a small carbon sink at 11.25 g C m?2 year?1 in the study area of 64.96 million hectares with a high inter-annual variability ranging from ?124 to 122.7 g C m?2 year?1 during the study period. As a result, the temperate grasslands sequestered about 410 Tg C in their vegetation and soils during the study period. The carbon sink occurred in typical steppe in central Inner Mongolia within the 300–400 mm rainfall zone and forest steppe in central and western China. By contrast, forest steppe in northeastern China mainly acted as a carbon source. Three major ecosystem types of forest steppe, typical steppe and desert steppe account for 54, 34, and 12 % of the total sink (7.3 Tg C year?1) during 1951–2007, respectively. Soil moisture and evapotranspiration had a dominant effect on carbon budget in the typical steppe and the forest steppe while both water conditions and nitrogen mineralization rate were the major factors in the desert steppe. At a decadal scale, the air temperature significantly increased by 0.4 °C and annual precipitation insignificantly decreased by 0.2 mm; the regional carbon sink increased by 2.2 Tg C per decade during the period 1951–2007. However, further sensitivity analysis suggests that the sink of temperate grasslands will be reduced if the climate gets warmer and drier during this century since the increasing net primary production does not keep up with the increase of heterotrophic respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号