首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于PCM改进算法的遥感混合像元模拟分析   总被引:7,自引:0,他引:7  
混合像元的存在是影响遥感图像分类精度的主要原因,模糊分类是进行混合像元分解的重要方法,其效果的好坏取决于各像元分类后对各类别的隶属度值能否准确地反映像元的类别组成。当非监督分类中的聚类数目与实际类别数目不符,或者监督分类中训练样本存在未训练类别时,常用的模糊c-均值(FCM)方法的效果将大大降低,而可能性c-均值(PCM)方法则可以解决这个问题。该文提出了基于PCM算法的遥感图像混合像元分解方法,并用监督分类方法实例说明PCM方法的优越性。  相似文献   

2.
Abstract

In recent years, the rough set (RS) method has been in common use for remote-sensing classification, which provides one of the techniques of information extraction for Digital Earth. The discretization of remotely sensed data is an important data preprocessing approach in classical RS-based remote-sensing classification. Appropriate discretization methods can improve the adaptability of the classification rules and increase the accuracy of the remote-sensing classification. To assess the performance of discretization methods this article adopts three indicators, which are the compression capability indicator (CCI), consistency indicator (CI), and number of the cut points (NCP). An appropriate discretization method for the RS-based classification of a given remotely sensed image can be found by comparing the values of the three indicators and the classification accuracies of the discretized remotely sensed images obtained with the different discretization methods. To investigate the effectiveness of our method, this article applies three discretization methods of the Entropy/MDL, Naive, and SemiNaive to a TM image and three indicators for these discretization methods are then calculated. After comparing the three indicators and the classification accuracies of the discretized remotely sensed images, it has been found that the SemiNaive method significantly reduces large quantities of data and also keeps satisfactory classification accuracy.  相似文献   

3.
Land cover map 2000 (LCM2000) is a comprehensive survey of UK broad habitats giving vector digital maps from segment-based classification of remotely sensed satellite data. This paper examines the influence of users in designing LCM2000 and the difficulties in applying a user-defined classification. It assesses problems and successes through comparisons with a sample-based field survey. These suggest that LCM2000 accuracy at broad habitat level may be around 80–85%; however, it was not possible fully to discriminate errors in LCM2000 from those of the field survey or from mismatches in scales, resolutions and survey dates. Calibration generated broad habitat cover statistics from LCM2000 data to field survey equivalence. These take full account of the heterogeneity of a study area, helping to generate accurate statistics, including those at local level where the field survey cannot operate effectively. The paper concludes that the comprehensive and extensive coverage from remote sensing comes closer than alternative methods to meeting users needs. However, it recognises that producers of remotely sensed information need to understand better the needs of users, and users need to appreciate what the technology can and cannot deliver. This paper adds some benefits of hindsight to the process of communication.  相似文献   

4.
遥感信息处理不确定性的可视化表达   总被引:2,自引:0,他引:2  
如何全面、准确地度量和可视化表达遥感信息处理中不确定性的程度和空间分布方式,是遥感信息不确定性研究的关键问题之一.传统的度量方法(例如误差矩阵)是将以训练样本集为基础的度量作为总分类精度的度量,而我们需要估计模型对于"样本外数据"的性能.本文首先利用信息论和粗糙集理论等度量遥感分类影像属性信息的不确定性,提出基于像元、目标和影像的遥感信息不确定性度量指标;然后分别描述了基于不同度量指标的可视化表达方式,并对我国黄河三角洲地区的Landsat TM影像进行了分类信息不确定性度量和可视化表达实验.  相似文献   

5.
The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial–temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the optimal STHNN weight parameters.  相似文献   

6.
人工神经网络遥感影像分类模型及其与知识集成方法研究   总被引:37,自引:5,他引:37  
骆剑承  周成虎  杨艳 《遥感学报》2001,5(2):122-129
以多层感知器(MLP)为例,探讨了地学知识与ANN融合进行遥感影像分类的方法。首先对MLP网络结构、学习算法及其改进进行分析;然后总结了MLP进行遥感影像分类的一般方法和存在的缺陷;发展了基于知识的MLP神经网络遥感影像分类模型,并具体利用基于规则的MLP方法进行了遥感土地覆盖分类的实验,把获得的结果与传统统计方法与一般ANN方法进行了综合比较,获得了有意义的结果。  相似文献   

7.
ABSTRACT

Tree species distribution mapping using remotely sensed data has long been an important research area. However, previous studies have rarely established a comprehensive and efficient classification procedure to obtain an accurate result. This study proposes a hierarchical classification procedure with optimized node variables and thresholds to classify tree species based on high spatial resolution satellite imagery. A classification tree structure consisting of parent and leaf nodes was designed based on user experience and visual interpretation. Spectral, textural, and topographic variables were extracted based on pre-segmented images. The random forest algorithm was used to select variables by ranking the impact of all variables. An iterating approach was used to optimize variables and thresholds in each loop by comprehensively considering the test accuracy and selected variables. The threshold range for each selected variable was determined by a statistical method considering the mean and standard deviation for two subnode types at each parent node. Classification of tree species was implemented using the optimized variables and thresholds. The results show that (1) the proposed procedure can accurately map the tree species distribution, with an overall accuracy of over 86% for both training and test stages; (2) critical variables for each class can be identified using this proposed procedure, and optimal variables of most tree plantation nodes are spectra related; (3) the overall forest classification accuracy using the proposed method is more accurate than that using the random forest (RF) and classification and regression tree (CART). The proposed approach provides results with 3.21% and 7.56% higher overall land cover classification accuracy and 4.68% and 10.28% higher overall forest classification accuracy than RF and CART, respectively.  相似文献   

8.
多源遥感影像像素级融合分类与决策级分类融合法的研究   总被引:10,自引:0,他引:10  
首先探讨了基于像素的多源遥感影像高频调制融合法,根据成像系统特性和Heisenberg测不准原理,设计的高斯滤波器对高分辨率影像滤波的方法是合理有效的。在研究BP神经网络的基础上,采用动量法和学习率自适应调整的策略,提高了BP神经网络学习算法收敛速度,并增强了算法的可靠性。提出并实现了多源遥感影像像素级融合分类与决策级分类融合两种分类方法,并进行了比较。采用Landsat TM3,4,5和航空SAR影像进行试验,结果表明两种分类方法是行之有效的,均适用于多源遥感影像分类。  相似文献   

9.
ABSTRACT

Rice mapping with remote sensing imagery provides an alternative means for estimating crop-yield and performing land management due to the large geographical coverage and low cost of remotely sensed data. Rice mapping in Southern China, however, is very difficult as rice paddies are patchy and fragmented, reflecting the undulating and varied topography. In addition, abandoned lands widely exist in Southern China due to rapid urbanization. Abandoned lands are easily confused with paddy fields, thereby degrading the classification accuracy of rice paddies in such complex landscape regions. To address this problem, the present study proposes an innovative method for rice mapping through combining a convolutional neural network (CNN) model and a decision tree (DT) method with phenological metrics. First, a pre-trained LeNet-5 Model using the UC Merced Dataset was developed to classify the cropland class from other land cover types, i.e. built-up, rivers, forests. Then, paddy rice field was separated from abandoned land in the cropland class using a DT model with phenological metrics derived from the time-series data of the normalized difference vegetation index (NDVI). The accuracy of the proposed classification methods was compared with three other classification techniques, namely, back propagation neural network (BPNN), original CNN, pre-trained CNN applied to HJ-1 A/B charge-coupled device (CCD) images of Zhuzhou City, Hunan Province, China. Results suggest that the proposed method achieved an overall accuracy of 93.56%, much higher than those of other methods. This indicates that the proposed method can efficiently accommodate the challenges of rice mapping in regions with complex landscapes.  相似文献   

10.
面向遥感大范围应用的目标,自动化程度仍是遥感影像分类面临的重要问题,样本的人工选择难以适应当前土地覆盖信息自动化提取的实际应用需求。为了构建一套基于先验知识的遥感影像全自动分类流程,本文将空间信息挖掘技术引入到遥感信息提取过程中,提出了一种面向遥感影像对象级分类的样本自动选择方法。该方法通过变化检测将不变地物标示在新的目标影像上,并将过去解译的地物类别知识迁移至新的影像上,建立新的特征与地物关系,从而完成历史专题数据辅助下目标影像的自动化的对象级分类。实验结果表明,在已有历史专题层的图斑知识指导下,该方法能有效地自动选择适用于新影像分类的可靠样本,获得较好的信息提取效果,提高了对象级分类的效率。  相似文献   

11.
This study investigates the potential of multi-temporal signature analysis of satellite imagery to map rice area in South 24 Paraganas district of West Bengal. Two optical data (IRS ID LISS III) and three RADARSAT SAR data of different dates were acquired during 2001. Multi-temporal SAR backscatter signatures of different landcovers were incorporated into knowledge based decision rules and kharif landcover map was generated. Based on the spectral variation in signature, the optical data acquired during rabi (January) and summer (March) season were classified using supervised maximum likelihood classifier. A co-incidence matrix was generated using logical approach for a combined “rabi-summer” and “kharif-rabi-summer” landcover mapping. The major landcovers obtained in South 24 Paraganas using remote sensing data are rice, water, aquaculture ponds, homestead, mangrove, and urban area. The classification accuracy of rice area was 98.2% using SAR data. However, while generating combined “kharif-rabi-summer” landcovers, the classification accuracy of rice area was improved from 81.6% (optical data) to 96.6% (combined SAR-Optical). The primary aim of the study is to achieve better accuracy in classifying rice area using the synergy between the two kinds of remotely sensed data.  相似文献   

12.
Integrating multiple images with artificial neural networks (ANN) improves classification accuracy. ANN performance is sensitive to training datasets. Complexity and errors compound when merging multiple data, pointing to needs for new techniques. Kohonen's self-organizing mapping (KSOM) neural network was adapted as an automated data selector (ADS) to replace manual training data processes. The multilayer perceptron (MLP) network was then trained using automatically extracted datasets and used for classification. Two hypotheses were tested: ADS adapted from the KSOM network provides adequate and reliable training datasets, improving MLP classification performance; and fusion of Landsat thematic mapper (TM) and SPOT images using the modified ANN approach increases accuracy. ADS adapted from the KSOM network improved training data quality and increased classification accuracy and efficiency. Fusion of compatible multiple data can improve performance if appropriate training datasets are collected. This proved to be a viable classification scheme particularly where acquiring sufficient and reliable training datasets is difficult.  相似文献   

13.
Ocean-colour remote sensing in optically shallow waters is influenced by contribution from the water column depth as well as by the substrate type. Therefore, it is required to include the contribution from the water column and substrate bottom type for bathymetry estimation. In this report we demonstrate the use of Artificial Neural Network (ANN) based approach to spectrally distinguish various benthic bottom types and estimate depth of substrate bottom simultaneously in optically shallow waters. We have used in-water radiative transfer simulation modeling to generate simulated top-of-the-water column reflectance the four major benthic bottom types viz. sea grass, coral sand, green algae and red algae using Hydrolight simulation model. The simulated remote sensing reflectance, for the four benthic bottom types having benthic bottom depth up to 30 m were generated for moderately clear waters. A multi-layer perceptron (MLP) type neural network was trained using the simulated data. ANN based approach was used for classification of the benthic bottom type and simultaneous inversion of bathymetry. Simulated data was inverted to yield benthic bottom type classification with an accuracy of ~98% for the four benthic substrate types and the substrate depth were estimated with an error of 0% for sea grass, 1% for coral sand and 1–3% for green and red algae up to 25 m, whereas for substrate bottom deeper than 25 m depth the classification errors increased by 2–5% for three substrate bottom types except sea grass bottom type. The initial results are promising which needs validation using the in-situ measured remote sensing reflectance spectra for implementing further on satellite data.  相似文献   

14.
改进的P-SVM支持向量机与遥感数据分类   总被引:2,自引:0,他引:2       下载免费PDF全文
张睿  马建文 《遥感学报》2009,13(3):445-457
本文介绍了将P-SVM算法引入多光谱/高分辨率遥感数据的分类, 并且展示了卫星ASTER和航空ADS40数字影像分类的技术过程和结果验证。结果表明:P-SVM方法的分类精度不低于SVM, 并减少了时耗。  相似文献   

15.
陈正超 《遥感学报》2009,(3):554-558
从理论和试验方面对图像的噪声评估方法进行了分析。结合北京1号小卫星特性, 进行了该类方法应用效能的评价, 讨论了分块评估噪声方法的最佳参数设置。选取满足噪声评估环境的图像, 实现了综合不同地表覆盖条件的北京1号小卫星图像噪声的评估。噪声评估结果与在轨测试情况的对比表明, 北京1号小卫星经过近3年的运行, 仍保持了较好的性能。  相似文献   

16.
基于多特征的遥感影像分类方法   总被引:44,自引:6,他引:44  
提出了一种基于多特征的遥感分类方法。首先 ,制定类方案并分解各个类 ,据此得到相应的子类 ;然后 ,通过选用适当的特征 ,使得每一个类都能以一个独特的特征组合来表达。与此同时 ,通过影像分割得到影像对象 ,并测量这些对象的各个特征 ,如光谱特征、几何特征及拓扑特征等。凭借这些特征 ,影像对象可以较为容易地被识别和分类。与传统的分类方法的比较表明 ,文中所提出的分类方法具有明显的优越性和良好的前景。  相似文献   

17.
Abstract

This study employs visible-near infrared and short wave infrared datasets of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map salt diapirs and salt diapir-affected areas using Multi-Layer Perceptron (MLP) in the Zagros Folded Belt, Iran, and introduces the role of earth observation technology and a type of digital earth processing in lithological mapping and geo-environmental impact assessment. MLP neural network model with several learning rates between 0.01 and 0.1 was carried out on ASTER L1B data, and the results were compared using confusion matrices. The most appropriate classification image for L1B input to MLP was produced by learning rate of 0.01 with Kappa coefficient of 0.90 and overall accuracy of 92.54%. The MLP result of input data set mapped lithological units of salt diapirs and demonstrated affected areas at the southern and western parts of the Konarsiah and Jahani diapirs, respectively. Field observations and X-ray diffraction analyses of field samples confirmed the dominant mineral phases identified remotely. It is concluded that MLP is an efficient approach for mapping salt diapirs and salt-affected areas.  相似文献   

18.
In the supervised classification process of remotely sensed imagery, the quantity of samples is one of the important factors affecting the accuracy of the image classification as well as the keys used to evaluate the image classification. In general, the samples are acquired on the basis of prior knowledge, experience and higher resolution images. With the same size of samples and the same sampling model, several sets of training sample data can be obtained. In such sets, which set reflects perfect spectral characteristics and ensure the accuracy of the classification can be known only after the accuracy of the classification has been assessed. So, before classification, it would be a meaningful research to measure and assess the quality of samples for guiding and optimizing the consequent classification process. Then, based on the rough set, a new measuring index for the sample quality is proposed. The experiment data is the Landsat TM imagery of the Chinese Yellow River Delta on August 8th, 1999. The experiment compares the Bhattacharrya distance matrices and purity index zl and △x based on rough set theory of 5 sample data and also analyzes its effect on sample quality.  相似文献   

19.
Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels — Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) — based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen’s kappa coefficient, κ). The accuracies at Levels 2–4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution data on species distribution, vegetation patterns, soil properties and on their correlations. Including the DTM-based variables increased the accuracy (κ) from 0.73 to 0.79 for Level 1. These findings show that the structural and spectral attributes of ALS echoes can be used for the classification of open landscapes, especially those where vegetation is influenced by elevation, such as coastal salt marshes, sand dunes, karst or alluvial areas; in these cases, ALS has a distinct advantage over other remotely sensed data.  相似文献   

20.
Abstract

The output from any spatial data processing method may contain some uncertainty. With the increasing use of satellite data products as a source of data for Geographical Information Systems (GIS), there have been some major concerns about the accuracy of the satellite‐based information. Due to the nature of spatial data and remotely sensed data acquisition technology, and conventional classification, any single classified image can contain a number of mis‐classified pixels. Conventional accuracy evaluation procedures can report only the number of pixels that are mis‐classified based on some sampling observation. This study investigates the spatial distribution and the amount of these pixels associated with each cover type in a product of satellite data. The study uses Thematic Mapper (TM) and SPOT multispectral data sets obtained for a study area selected in North East New South Wales, Australia. The Fuzzy c‐Means algorithm is used to identify the classified pixels that contained some uncertainty. The approach is based on evaluating the strength of class membership of pixels. This study is important as it can give an indication of the amount of error resulting from the mis‐classification of pixels of specific cover types as well as the spatial distribution of such pixels. The results show that the spatial distribution of erroneously classified pixels are not random and varies depending on the nature of cover types. The proportions of such pixels are higher in spectrally less clearly defined cover types such as grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号