首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
随着全球气候变暖,冰架崩解事件的发生愈益频繁.冰架崩解产生的冰山是南极冰盖-冰架-海洋系统中活跃的组成部分,冰山的运动特征和时空分布对南大洋洋流循环、海洋生态以及水文系统有着非常重要的影响.因此利用卫星遥感监测冰山运动与变化信息,探究冰山崩解和消融过程,研究南极冰山分布,以及冰山和周围海洋环境之间的相互作用机制,是理解南极冰山变化与全球气候变化之间关系的关键.本文利用覆盖全南极海岸线的ENVISAT ASAR影像,基于简译软件的面向对象的多尺度图像分割算法实现了全南极近岸海域冰山对象的提取.利用2006年8月63期ENVISAT ASAR影像提取了32 267座面积大于0.06 km2的冰山,统计了冰山空间分布特征,研究发现南极小型冰山在全南极淡水输入中扮演着重要的作用.  相似文献   

2.
Abstract

During the Labrador Ice Margin Experiment (LIMEX) of March‐April 1989, the International Ice Patrol (IIP) of the United States Coast Guard deployed two satellite‐tracked TIROS Arctic Drifter (TAD) platforms on two medium‐sized tabular icebergs. The icebergs were drifting in sea ice of about 9/10 concentration east of Newfoundland. These deployments were part of an experiment to examine differential sea‐ice/iceberg motion during spring conditions near the ice margin. Sea‐ice concentration and movement data were collected concurrently by other LIMEX investigators.

The TADs, deployed on 11 March 1989, were tracked using the ARGOS data collection and location system carried on two NOAA polar‐orbiting satellites of the TIROS family. For two months following the deployment, IIP periodically attempted to relocate the icebergs during routine aerial iceberg patrols. One of the TADs stopped transmitting on 23 April 1989 probably because of a major calving event that resulted in the TAD being crushed. As of 24 April the drift rate of the other TAD nearly doubled compared with its drift rate prior to that date, indicating that it had fallen off the iceberg and was floating on water. By 24 April there was no sea ice near either of the two icebergs.

The TAD data provide a unique datasetfor modelling the deterioration of icebergs while they emerge out of the marginal ice zone and travel in open water. It is shown that a good knowledge of the environmental conditions, pariicularly water temperature and sea state, are critical to model successfully the deterioration and calving of the two icebergs.  相似文献   

3.
Response of the Antarctic ice sheet to future greenhouse warming   总被引:2,自引:0,他引:2  
Possible future changes in land ice volume are mentioned frequently as an important aspect of the greenhouse problem. This paper deals with the response of the Antarctic ice sheet and presents a tentative projection of changes in global sea level for the next few hundred years, due to changes in its surface mass balance. We imposed a temperature scenario, in which surface air temperature rises to 4.2° C in the year 2100 AD and is kept constant afterwards. As GCM studies seem to indicate a higher temperature increase in polar latitudes, the response to a more extreme scenario (warming doubled) has also been investigated. The mass balance model, driven by these temperature perturbations, consists of two parts: the accumulation rate is derived from present observed values and is consequently perturbed in proportion to the saturated vapour pressure at the temperature above the inversion layer. The ablation model is based on the degree-day method. It accounts for the daily temperature cycle, uses a different degree-day factor for snow and ice melting and treats refreezing of melt water in a simple way. According to this mass balance model, the amount of accumulation over the entire ice sheet is presently 24.06 × 1011 m3 of ice, and no runoff takes place. A 1°C uniform warming is then calculated to increase the overall mass balance by an amount of 1.43 × 1011 m3 of ice, corresponding to a lowering of global sea level with 0.36 mm/yr. A temperature increase of 5.3°C is needed for the increase in ablation to become more important than the increase in accumulation and the temperature would have to rise by as much as 11.4°C to produce a zero surface mass balance. Imposing the Bellagio-scenario and accumulating changes in mass balance forward in time (static response) would then lower global sea level by 9 cm by 2100 AD. In a subsequent run with a high-resolution 3-D thermomechanic model of the ice sheet, it turns out that the dynamic response of the ice sheet (as compared to the direct effect of the changes in surface mass balance) becomes significant after 100 years or so. Ice-discharge across the grounding-line increases, and eventually leads to grounding-line retreat. This is particularly evident in the extreme case scenario and is important along the Antarctic Peninsula and the overdeepened outlet glaciers along the East Antarctic coast. Grounding-line retreat in the Ross and Ronne-Filchner ice shelves, on the other hand, is small or absent.  相似文献   

4.
针对冰盖的定向地球工程研究旨在增强冰盖稳定性和减缓冰盖物质流失,从源头上减少冰盖对海平面上升的贡献,有望为应对气候变化和保护海岸线争取几百年的时间。冰盖地球工程主要作用在冰底和冰架-海洋界面上,主要途径如下:(1)排干或冻结冰盖底部水来干燥冰床,增强冰盖底部摩擦力;(2)在海洋中建造人造岛来支撑漂浮的冰架;(3)在冰架前端建造水下隔离墙,阻止温暖的海水到达冰川底部以减缓其融化。冰盖地球工程包括数值模拟、方案设计、工程试验和政治法律等诸多方面的研究。国际上的研究团队正在开展数值模拟和方案设计方面的研究,工程试验和政治法律等方面的研究尚未起步。预计工程试验的难度阶梯很可能是从实验室试验开始,到小尺度的野外试验,接着到格陵兰冰盖的入海冰川,最后到南极冰盖的入海冰川。针对冰盖的定向地球工程研究很有可能成为21世纪全球变化领域新兴的研究方向。  相似文献   

5.
Variability and change in the Canadian cryosphere   总被引:2,自引:1,他引:1  
During the International Polar Year (IPY), comprehensive observational research programs were undertaken to increase our understanding of the Canadian polar cryosphere response to a changing climate. Cryospheric components considered were snow, permafrost, sea ice, freshwater ice, glaciers and ice shelves. Enhancement of conventional observing systems and retrieval algorithms for satellite measurements facilitated development of a snapshot of current cryospheric conditions, providing a baseline against which future change can be assessed. Key findings include: 1. surface air temperatures across the Canadian Arctic exhibit a warming trend in all seasons over the past 40?years. A consistent pan-cryospheric response to these warming temperatures is evident through the analysis of multi-decadal datasets; 2. in recent years (including the IPY period) a higher rate of change was observed compared to previous decades including warming permafrost, reduction in snow cover extent and duration, reduction in summer sea ice extent, increased mass loss from glaciers, and thinning and break-up of the remaining Canadian ice shelves. These changes illustrate both a reduction in the spatial extent and mass of the cryosphere and an increase in the temporal persistence of melt related parameters. The observed changes in the cryosphere have important implications for human activity including the close ties of northerners to the land, access to northern regions for natural resource development, and the integrity of northern infrastructure.  相似文献   

6.
Abstract

An explicit microphysics scheme, including warm rain and ice‐phase processes, has been incorporated into the Canadian Mesoscale Compressible Community Model (MC2). Three equations for cloud water mixing ratio, rain water mixing ratio, and ice or snow mixing ratio are solved explicitly. The hydrometeor mass loading term is also included. For the single ice category, a generalized gamma size distribution is assumed and a new formulation by Meyers et al. (1992) is used to predict the ice concentration.

A numerical simulation of the ERICA IOP2 cyclone shows that the scheme is efficient. Despite running at a relatively large time step, the scheme succeeded in capturing the deepening rates and the mesoscale features of the cyclone. The distribution of cloud and precipitation is in good agreement with satellite observations. Comparison with other implicit schemes available in MC2 show comparable performance in terms of deepening rate and precipitation rate. However, the explicit scheme generates mesoscale features in better agreement with observations.  相似文献   

7.
Melt ponds significantly affect Arctic sea ice thermodynamic processes. The melt pond parameterization scheme in the Los Alamos sea ice model(CICE6.0) can predict the volume, area fraction(the ratio between melt pond area to sea ice area in a model grid), and depth of melt ponds. However, this scheme has some uncertain parameters that affect melt pond simulations. These parameters could be determined through a conventional parameter estimation method, which requires a large number of sensitivity simulations. The adjoint model can calculate the parameter sensitivity efficiently. In the present research, an adjoint model was developed for the CESM(Community Earth System Model) melt pond scheme. A melt pond parameter estimation algorithm was then developed based on the CICE6.0 sea ice model, melt pond adjoint model,and L-BFGS(Limited-memory Broyden-Fletcher-Goldfard-Shanno) minimization algorithm. The parameter estimation algorithm was verified under idealized conditions. By using MODIS(Moderate Resolution Imaging Spectroradiometer)melt pond fraction observation as a constraint and the developed parameter estimation algorithm, the melt pond aspect ratio parameter in CESM scheme, which is defined as the ratio between pond depth and pond area fraction, was estimated every eight days during summertime for two different regions in the Arctic. One region was covered by multi-year ice(MYI) and the other by first-year ice(FYI). The estimated parameter was then used in simulations and the results show that:(1) the estimated parameter varies over time and is quite different for MYI and FYI;(2) the estimated parameter improved the simulation of the melt pond fraction.  相似文献   

8.
The present study focuses on the impact of ocean state (i.e., salinity and temperature) updates on the sea-ice analysis and short-term forecast in an assimilative sea ice–ocean coupled system. A relatively simple sea-ice assimilation scheme was applied to the sea ice–ocean coupled North Atlantic Nucleus for European Modelling of the Ocean (NEMO) system with a focus on the Canadian East Coast. In this assimilation scheme the ocean state was updated directly based on the correlations between the model's sea-ice concentration and the upper ocean salinity and temperature. These correlations were based on a limited time ensemble generated by applying random perturbations to the atmospheric forcing fields. High deviations in the sea-ice conditions were found along the ice edge, implying that the sea-ice edge position is sensitive to small atmospheric forcing variations. Assimilation runs with and without ocean state updates (i.e., sea-ice concentration nudging) were conducted and compared for the winter of 2002. Both continuous and intermittent assimilation schemes were examined. In a continuous sea-ice assimilation experiment, the ocean direct update is unnecessary. When the sea-ice updates are introduced intermittently the ocean state has to be altered to accommodate them, or they will be rapidly diminished by the model's dynamics. The correlations between sea-ice concentration and ocean salinity and temperature based on the first 15 days of January were used for corrections during the entire winter season when, in addition to thermodynamic processes, dynamic processes are responsible for, and even dominate, sea-ice evolution on the Labrador and Newfoundland shelves. This was an adequate choice as was demonstrated by the results of the study which showed that the experiments with ocean state adjustments generated more accurate short-term sea-ice forecasts.  相似文献   

9.
Book review     
Summary and Conclusions The Last Great Ice Sheets provides a valuable compilation for current estimates of the extent and timing of the maximum ice extent of the last ice age period around the globe. The areas of uncertainty are indicated and emphasis is given to points of controversy where further research is needed to resolve the most important problems still remaining. The work thereby presents plausible upper and lower limit estimates for the maximum extent of the ice corresponding to about 18 ka BP. These limits can be used for the boundary conditions required for atmospheric climate modelling studies. For this type of application the differences in the upper and lower limits are not serious and consequently the possible errors in the reconstruction estimates are not so important. The greatest uncertainties in the ice cover reconstructions occur for the northerly limits of the grounded ice which tend to be in off-shore regions where reliable data is sparse. This signals the requirement for a much greater research effort to collect off-shore sediment sequences and other data to help clarify the ice cover fluctuation record. The possibility of an extensive arctic ice shelf system and marine ice sheet cover interconnecting with the various grounded ice sheets is put forward as a working hypothesis along with arguments in favour of the upper limit estimates for the maximum ice extent. The extent of the ice age ice shelves is an important question which should be examined by dynamic ice sheet modelling with explicit ice shelf formulation. The extensive growth of the ice sheets to seaward margins leads naturally to ice shelf formation. The major questions are: how extensive were the ice shelves, and to what extent did coalescence occur? The further hypothesis that the ice shelves may have had a major role in the growth and decay of the ice sheets is more difficult to support since the results of the dynamic modelling indicate that the ice shelves form readily as a result of extensive growth of the ice sheets but it is difficult to start extensive ice growth near sea level. The information presented for the timing of the advance towards the maximum ice cover and the subsequent pattern of retreat provides further valuable material to test the dynamic ice sheet and climate models including the reactions to the Earth's orbital radiation changes. These results for the rates of change of the ice cover taken together with the modelling results of Budd and Smith indicate that neither the ice sheets nor the bedrock depression had time to reach equilibrium states. The non-equilibrium nature of the ice sheets with only short periods between relatively rapid advance and retreat phases is an important factor that needs to be taken into account in assessing the reconstructions of the ice sheets. This emphasises the need for further work with dynamic ice sheet models and coupled global atmosphere ocean models to determine more clearly the sequence of changes during the growth and decay of the large ice sheets. ‘The Last Great Ice Sheets’ provides a timely data base and compilation to support these studies.  相似文献   

10.
Summary One of the recent campaigns devoted to precipitation studies using both active and passive microwave remote sensing systems was the Convection and Precipitation/Electrification Experiment (CaPE), which took place in central Florida during the summer of 1991. During CaPE, the airborne Advanced Microwave Precipitation Radiometer (AMPR), having four channels at 10.7, 19.35, 37.1 and 85.5 GHz and the National Center for Atmospheric Research CP-2 multiparameter radar at S-band (3 GHz) and X-band (10 GHz) were operated simultaneously. In this paper, we compare estimated hydrometeor liquid/ice water contents and surface rainrates, both retrieved from the AMPR radiometer and CP-2 radar measurements, for a case study consisting of a heavy precipitating storm over land near Cape Canaveral on August 12, 1991. The multi-frequency radiometer-based retrieval scheme uses a cloud-precipitation dataset generated from a cloud model and extended by a physically-constrained Monte Carlo procedure, along with a discrete-ordinate radiative transfer model and a principal component statistical technique to help formulate non-linear regression equations for the sought-after hydrometeor quantities. By applying linear discriminant analysis, the algorithm is used to estimate column integrated liquid/ice water contents, as well as the vertical profiles of these quantities to within a specified accuracy. Rainfall rates are estimated either by non-linear regression or by a suitable fallout model. The analysis has confined itself to along-track nadir-looking AMPR measuremets to avoid complications with variable polarization mixing and geometric distortion for off-nadir observations. Considering the different model assumptions used in the two types of retrieval algorithms and the diverse geophysical information content within the two types of measurements, substantial agreement between the radar- and radiometer-derived retrievals has been achieved for the columnar liquid/ice water contents and rainrates.With 19 FiguresThe National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation.  相似文献   

11.
A coupled global atmosphere-ocean model is used to study the influence of the Antarctica ice sheet in a configuration that mimics that of the early Miocene on the atmospheric and oceanic circulations. Based on different climate simulations of the present day (CTR) and conducted with distinct Antarctic ice sheet topography (AIS-EXP), it is found that the reduction of the Antarctic ice sheet topography (AIS) induces warming of the Southern Hemisphere and reduces the meridional thermal gradient. Consequently, the atmospheric transient low level eddy heat flux $[(\overline{v^{\prime}T^{\prime}})]$ and the eddy momentum flux $[(\overline{u^{\prime}v^{\prime}})]$ are reduced causing the reduced transport of heat from the mid-latitudes to the pole. The stationary flow and transient wave anomalies generate changes in the SSTs which modify the rate of deep water formation, strengthening the formation of the Antarctic Bottom Water. Substantial changes are predicted to occur in the atmospheric and oceanic heat transport and a comparison between the total heat transport of the atmosphere-ocean system, as simulated by the AIS-EXP and the CTR runs, shows that the reduction of the AIS height leads to reduced Southern Hemisphere poleward and increased equatorward heat transport. These results are in agreement with reduced storm track activities and baroclinicity.  相似文献   

12.
Data for this study were collected by the instruments mounted on the NCAR King Air and rawinsonde during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) on 19 October, 1986. The main purpose of this study is to understand the basic concept of evaporative cooling in a dry layer below a cirrus generating cell. Relative humidity with respect to liquid water RHW and temperature lapse rate γe below the cirrus base at about 6.7 km were about 40% and 3.7°C km−1, respectively. Evaporative cooling rate (ECR) in the 1.5 km thick subcloud layer was estimated to be approximately 0.1 to 2°C h−1 and it was found to be comparable with the infrared heating rate calculated from radiation measurements. Because of ice crystal evaporation, RHW in the same layer may reach saturation with respect to ice in 1.5 hours.  相似文献   

13.
The features of sea ice drift in the Sea ofOkhotsk are studied using Terra and Aqua satellite MODIS spectroradiometer data. The spatial heterogeneity of sea ice drift in the areas of hydrocarbon fields on the Magadan and Sakhalin shelves is analyzed.  相似文献   

14.
Satellite altimetry offers means of directly measuring changes in surface elevation over the polar ice sheets of Greenland and Antarctica. By relating these changes to variations in ice mass, it becomes possible to detect short-term changes in the Earth's ice sheets. However, it is not immediately obvious that short-term changes in surface elevation are indicative of any (long-term) trend in ice mass. An increase in ice thickness may very well reflect the response of the glacier to random fluctuations in precipitation. The spectrum of this response is dominated by low frequencies, with the majority of the variance contained in the longer time scales. As a result, the ice-thickness record may exhibit trends that have no climatic significance, but are due to a low-frequency response to random forcing. A simple model for the interpretation of observed elevation changes is developed and applied to measurements made over the Greenland Ice Sheet. It appears to be unlikely that the difference between the rate of thickening derived by Zwally and others (1989) using repeat satellite altimetry, and significantly smaller previous estimates, can be explained as being the response of the ice sheet to random climatic forcing or that this difference can be attributed to a recent increase in accumulation rate.  相似文献   

15.
In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of variables and their magnitude values, and the new scheme, together with the algorithm, is more efficient and saves more computer time.  相似文献   

16.
Abstract

Radar reflectivity measurements and sounding data were analyzed to investigate snowfall production in a long‐lasting snowband that formed in advance of a warm surface front moving across Alberta. The sounding data indicated that the band could have been forced by slantwise overturning during the release of moist symmetric instability combined with frontogenesis. The stability analysis presented here is novel in that it includes ice phase thermodynamics, neglected in previous studies of slantwise convection.

Radar reflectivity fields were analyzed to determine the total snow content and the mass outflow rate as factors of time. The peak value of total snow content was 17 kilotons per km of snowband, and the peak mass outflow rate was 10 tons s‐1 km‐1. The snowfall rate averaged across the cloud base was about 0.8 cm h‐1, and the average snow content remained close to 0.2 g m‐1. The characteristic time (defined as the ratio of total snow content over mass outflow rate) was about 30 minutes, which is approximately the time needed for the growth of snowflakes by aggregation in the observed temperature range. The precipitation efficiency of the snowband, defined as the ratio of snow mass outflow to water vapour inflow was estimated to be 14%. The precipitation production values observed in the Alberta snowband are compared with previous estimates reported for frontal rainbands and Alberta thunderstorms.  相似文献   

17.
Abstract

The present study examines sources of the interannual variability in salinity on the Newfoundland continental shelf observed in a 40‐year time series from an oceanographic station known as Station 27. Specifically, we investigate, through lag‐correlation analysis, the a priori hypotheses that the salinity anomalies at Station 27 are determined by freshwater runoff anomalies from Hudson and Ungava bays and by ice‐melt anomalies in Hudson Bay and on the Labrador Shelf. Interannual variations of summer runoff into Hudson Bay were significantly negatively correlated with salinity anomalies on the Newfoundland Shelf with a lag (9 months) that is consistent with expected travel times based on known current velocities in Hudson Bay and along the Labrador Shelf. Sea‐ice extent over the Labrador and northern Newfoundland shelves was significantly negatively correlated with salinity at a lag of 3 to 4 months, corresponding to the time of minimum salinity at Station 27. It appears that ice‐melt over the Labrador‐northern Newfoundland Shelf is primarily responsible for the seasonal salinity minimum over the Newfoundland Shelf. Interannual variability in runoff into Ungava Bay and ice‐melt in Hudson Bay were not correlated with interannual salinity variations on the Newfoundland Shelf.  相似文献   

18.
The Paris Agreement states that, relative to pre-industrial times, the increase in global average temperature should be kept to well below 2 °C and efforts should be made to limit the temperature increase to 1.5 °C. Emissions scenarios consistent with these targets are derived. For an eventual 2 °C warming target, this could be achieved even if CO2 emissions remained positive. For a 1.5 °C target, CO2 emissions could remain positive, but only if a substantial and long-lasting temperature overshoot is accepted. In both cases, a warming overshoot of 0.2 to 0.4 °C appears unavoidable. If the allowable (or unavoidable) overshoot is small, then negative emissions are almost certainly required for the 1.5 °C target, peaking at negative 1.3 GtC/year. In this scenario, temperature stabilization occurs, but cumulative emissions continue to increase, contrary to a common belief regarding the relationship between temperature and cumulative emissions. Changes to the Paris Agreement to accommodate the overshoot possibility are suggested. For sea level rise, tipping points that might lead to inevitable collapse of Antarctic ice sheets or shelves might be avoided for the 2 °C target (for major ice shelves) or for the 1.5 °C target for the West Antarctic Ice Sheet. Even with the 1.5 °C target, however, sea level will continue to rise at a substantial rate for centuries.  相似文献   

19.
In the framework of the study of the Eemian interglacial we consider the role of the Greenland ice sheet in the rise of the mean level of the World Ocean. Its contribution estimated as 2 m confirms the newest estimates based on the model results and on the proxy data analysis. In the beginning of the Eemian interglacial (earlier than 126 thousand years ago) mass lost occurs through the marine margin of the sheet. During the next five millennia, the negative surface mass balance plays the leading role. Taking into account the contribution of Greenland ice sheet, ocean thermal expansion, and the melting of mountain glaciers and ice caps, it is very probable that the West Antarctic ice sheet was the main source of the global sea level growth equal to 6–9 m the compared to the present.  相似文献   

20.
A new cloud microphysics scheme including a prognostic treatment of cloud ice (PCI) is developed to yield a more physically based representation of the components of the atmospheric moisture budget in the general circulation model ECHAM. The new approach considers cloud water and cloud ice as separate prognostic variables. The precipitation formation scheme for warm clouds distinguishes between maritime and continental clouds by considering the cloud droplet number concentration, in addition to the liquid water content. Based on several observational data sets, the cloud droplet number concentration is derived from the sulfate aerosol mass concentration as given from the sulfur cycle simulated by ECHAM. Results obtained with the new scheme are compared to satellite observations and in situ measurements of cloud physical and radiative properties. In general, the standard model ECHAM4 and also PCI capture the overall features, and the simulated results usually lie within the range of observed uncertainty. As compared to ECHAM4, only slight improvements are achieved with the new scheme. For example, the overestimated liquid water path and total cloud cover over convectively active regions are reduced in PCI. On the other hand, some shortcomings of the standard model such as underestimated shortwave cloud forcing over the extratropical oceans of the respective summer hemisphere are more pronounced in PCI.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–9 Sept. 1995 under the auspices of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号