首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence.  相似文献   

2.
The predictable patterns and predictive skills of monsoon precipitation in the Northern Hemisphere summer (June–July–August) are examined using reforecasts (1983–2010) from the National Center for Environmental Prediction Climate Forecast System version 2 (CFSv2). The possible connections of these predictable patterns with global sea surface temperature (SST) are investigated. The empirical orthogonal function analysis with maximized signal-to-noise ratio is used to isolate the predictable patterns of the precipitation for three regional monsoons: the Asian and Indo-Pacific monsoon (AIPM), the Africa monsoon (AFM), and the North America monsoon (NAM). Overall, the CFSv2 well predicts the monsoon precipitation patterns associated with El Niño-South Oscillation (ENSO) due to its good prediction skill for ENSO. For AIPM, two identified predictable patterns are an equatorial dipole pattern characterized by opposite variations between the equatorial western Pacific and eastern Indian Ocean, and a tropical western Pacific pattern characterized by opposite variations over the tropical northwestern Pacific and the Philippines and over the regions to its west, north, and southeast. For NAM, the predictable patterns are a tropical eastern Pacific pattern with opposite variations in the tropical eastern Pacific and in Mexico, the Guyana Plateau and the equatorial Atlantic, and a Central American pattern with opposite variations in the eastern Pacific and the North Atlantic and in the Amazon Plains. The CFSv2 can predict these patterns at least 5 months in advance. However, compared with the good skill in predicting AIPM and NAM precipitation patterns, the CFSv2 exhibits little predictive skill for AFM precipitation, probably because the variability of the tropical Atlantic SST plays a more important than ENSO in the AFM precipitation variation and the prediction skill is lower for the tropical Atlantic SST than the tropical Pacific SST.  相似文献   

3.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

4.
The extent to which the North Atlantic Oscillation (NAO) is influenced by changes in the ocean state is an issue that has attracted much recent attention. Although there have been counter claims, the weight of evidence clearly suggests that forcing by the ocean of year-to-year changes in the NAO is a weak influence by comparison with atmospheric internal variability. The NAO is thus very different in character to the Southern Oscillation (SO), and its predictability—at least on seasonal-to-interannual timescales—is almost certainly much lower.Although weak, the influence of the ocean on the NAO is not negligible. In a previous study we found that wintertime North Atlantic climate, including the NAO, was significantly influenced by a tripole pattern of North Atlantic SST anomalies. Here we report the results of experiments to further elucidate the nature of this influence. We show that the tripole pattern induces a significant response both in the tropical Atlantic and at mid-to-high latitudes. The low latitude response is forced by the low latitude SST anomalies, but the high latitude response is influenced by the extratropical SST anomalies as well as those in the tropics. Furthermore, we find evidence of nonlinear interaction between the influence of the tropical and extratropical SST anomalies. Lastly, we investigate the feedback from the atmosphere onto the SST tripole. We find that the expected negative feedback is significantly modified at low latitudes by the dynamical response of the atmosphere.  相似文献   

5.
The seasonal footprinting mechanism (SFM) is thought to be a pre-cursor to the El Nino Southern Oscillation (ENSO). Fluctuations in the North Pacific Oscillation (NPO) impact the ocean via surface heat fluxes during winter, leaving a sea-surface temperature (SST) “footprint” in the subtropics. This footprint persists through the spring, impacting the tropical Pacific atmosphere–ocean circulation throughout the following year. The simulation of the SFM in the National Centers for Environmental Prediction (NCEP)/Climate Forecast System, version 2 (CFSv2) is likely to have an impact on operational predictions of ENSO and potentially seasonal predictions in the United States associated with ENSO teleconnection patterns. The ability of the CFSv2 to simulate the SFM and the relationship between the SFM and ENSO prediction skill in the NCEP/CFSv2 are investigated. Results indicate that the CFSv2 is able to simulate the basic characteristics of the SFM and its relationship with ENSO, including extratropical sea level pressure anomalies associated with the NPO in the winter, corresponding wind and SST anomalies that impact the tropics, and the development of ENSO-related SST anomalies the following winter. Although the model is able to predict the correct sign of ENSO associated with the SFM in a composite sense, probabilistic predictions of ENSO following a positive or negative NPO event are generally less reliable than when the NPO is not active.  相似文献   

6.
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.  相似文献   

7.
BCC_CSM模式夏季关键区海温回报评估   总被引:5,自引:1,他引:4  
利用国家气候中心气候系统模式(Beijing Climate Center Climate System Model, BCC_CSM)的汛期回报试验数据集, 评估了夏季中低纬度海表面温度(Sea Surface Temperature, SST)的预测能力。结果表明:该模式对夏季中低纬海温具有一定的预测能力, 且在低纬地区的预测技巧尤为出色。对太平洋、热带印度洋和北大西洋这三个关键区进一步分析发现, 该模式对不同海区海温的预测能力有所不同。其中, 模式对夏季北太平洋海温及Ni?o 3.4指数表现出显著的预测技巧, 对热带印度洋、北大西洋海温及热带印度洋全区一致海温模态(Indian Ocean Basin-wide Warming, IOBW)也表现出一定的预测技巧, 而对北大西洋海温三极子模态(North Atlantic Tripole, NAT)的技巧相对较低。研究发现, 预测技巧与前冬的ENSO状态密切相关, 当前冬位于ENSO异常位相时, BCC_CSM模式对于三大海区夏季海温的预测技巧要高于前冬位于ENSO正常位相时, 且对NAT指数也具有更高的预测技巧。前冬ENSO所处的位相对于该模式对夏季Ni?o 3.4指数及IOBW指数的预测技巧影响不明显。此外, 该模式对夏季海温的预测技巧依赖于超前时间, 预测技巧在大部分情形下超前1个月的预测技巧相对更高。  相似文献   

8.
黄必城  苏涛  封国林 《大气科学》2019,43(3):525-538
本文基于动力调整方法,利用客观分析海气通量(OAFlux)资料研究了1958~2016年全球海洋蒸发量变化及其动力作用和辐射强迫分量的变化,发现海洋蒸发量及其动力作用分量具有一致性年代际变化特征,特别是在20世纪70年代及90年代末期存在明显的年代际转折。进一步分析发现:主要动力因子有太平洋—北美遥相关型(PNA)、北极涛动(AO)、北大西洋涛动(NAO)、厄尔尼诺—南方涛动(ENSO)和阿留申低压(AL),并受到太平洋年代际振荡(PDO)的影响,其中,1970年代末期的转折与PNA、PDO、ENSO和AL密切相关,而1990年代末期的转折还与NAO变化有关。动力作用分量的前六个模态解释方差达到67.5%,其中,低纬北太平洋和印度洋蒸发异常主要与海表温度(SST)及其引起的环流异常有关,南太平洋、中纬北太平洋和北大西洋蒸发异常与环流异常直接相关。ENSO与PDO在全球海洋蒸发量上的影响要大于NAO。单因子相关分析发现南方涛动指数(SOI)、NAO和PDO与海洋蒸发年代际变化密切相关。总体来说,动力作用分量在海洋蒸发的年代际变化中起主导作用,其中,以ENSO、NAO和PDO的影响最大。  相似文献   

9.
The NCEP Climate Forecast System version 2 (CFSv2) provides important source of information about the seasonal prediction of climate over the Indo-Pacific oceans. In this study, the authors provide a comprehensive assessment of the prediction of sea surface temperature (SST) in the tropical Indian Ocean (IO). They also investigate the impact of tropical IO SST on the summer anomalous anticyclonic circulation over the western North Pacific (WNPAC), focusing on the relative contributions of local SST and remote forcing of tropical IO SST to WNPAC variations. The CFSv2 captures the two most dominant modes of summer tropical IO SST: the IO basin warming (IOBW) mode and the IO dipole (IOD) mode, as well as their relationship with El Niño-Southern Oscillation (ENSO). However, it produces a cold SST bias in IO, which may be attributed to deeper-than-observed mixed layer and smaller-than-observed total downward heat flux in the tropical IO. It also overestimates the correlations of ENSO with IOBW and IOD, but underestimates the magnitude of IOD and summer IOBW. The CFSv2 captures the climate anomalies related to IOBW but not those related to IOD. It depicts the impact of summer IOBW on WNPAC via the equatorial Kelvin wave, which contributes to the maintenance of WNPAC in July and August. The WNPAC in June is mostly forced by local cold SST, which is better predicted by the CFSv2 compared to July and August. The mechanism for WNPAC maintenance may vary with lead time in the CFSv2.  相似文献   

10.
李斐斐  徐彩艳 《气象学报》2023,81(1):124-136
北大西洋涛动作为冬季北大西洋地区大气环流的主模态之一,其年际变率对全球许多地区气候变率具有重要影响,但目前其预测技巧并不高。采用降维投影四维变分同化方法,在耦合模式中建立了基于全球大气资料的弱耦合资料同化系统,直接同化月平均再分析资料,并进行了年代际后报试验。结果表明,通过耦合资料同化的手段,可以显著提升耦合模式对冬季北大西洋涛动年际变率及其相关的欧洲北部、美国东部、欧亚大陆北部的冬季近地面温度年际变率的后报效果,相关系数均超过0.05显著水平t检验。该后报效果的改进主要与在耦合同化过程中通过耦合模式中自由发展的海-气相互作用将大气的观测信息储存在耦合模式的海洋分量中,改进了冬季北大西洋地区海表温度“三极”型分布的时空变率及其时间序列的后报效果有关。该研究强调了耦合模式初始状态的准确度对提升冬季北大西洋涛动年际变率的后报技巧具有重要作用。  相似文献   

11.
A sign-variable structure of sea surface temperature (SST) anomalies in the high, subtropical, and tropical latitudes of the North Atlantic under the North Atlantic Oscillation index (NAO) values NAO ≥ 1 and NAO ≤ ?1 is considered. A difference in cyclonic activity in winter under extreme values of the NAO is noted. The relation between the NAO anomalies in the areas with maximum cyclonic activity in the North Atlantic and some hydrometeorological quantities in the Crimea is analyzed. Preliminary estimates of the occurrence of a quasi-twenty-year cycle in the variability of processes determined by extreme values of the NAO are presented.  相似文献   

12.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

13.
利用大气环流模式模拟北大西洋海温异常强迫响应   总被引:3,自引:1,他引:3  
李建  周天军  宇如聪 《大气科学》2007,31(4):561-570
北大西洋地区的海温异常能够在多大程度上对大气产生影响,一直是一个有争议的问题。作者利用伴随北大西洋涛动出现的海温异常对大气环流模式CAM2.0.1进行强迫,考察了模式在冬季(12月、1月和2月)对三核型海温异常的响应。通过与欧洲中期天气预报中心提供的再分析资料的对比,发现该模式可以通过海温强迫在一定程度上再现具有北大西洋涛动特征的温度场和环流场。在北大西洋及其沿岸地区,模式模拟出了三核型的准正压响应,与经典的北大西洋涛动型大气异常是一致的。模式结果与北大西洋地区大气内部主导模态的差别主要体现在两个方面:一是异常中心位置多偏向于大洋上空,在陆地上的异常响应强度很弱;二是高纬地区对海温异常的响应不显著,没有强迫出与实际的大气模态相对应的异常中心,表明该地区海洋的反馈作用较弱。  相似文献   

14.
Diagnostic evaluations of the relative performances of CFSv1 and CFSv2 in prediction of monthly anomalies of the ENSO-related Nino3.4 SST index are conducted using the common hindcast period of 1982–2009 for lead times of up to 9 months. CFSv2 outperforms CFSv1 in temporal correlation skill for predictions at moderate to long lead times that traverse the northern spring ENSO predictability barrier (e.g., a forecast for July made in February). However, for predictions during less challenging times of the year (e.g., a forecast for January made in August), CFSv1 has higher correlations than CFSv2. This seeming retrogression is caused by a cold bias in CFSv2 predictions for Nino3.4 SST during 1982–1998, and a warm bias during 1999–2009. Work by others has related this time-conditional bias to changes in the observing system in late 1998 that affected the ocean reanalysis serving as initial conditions for CFSv2. A posteriori correction of these differing biases, and of a similar (but lesser) situation affecting CFSv1, allows for a more realistic evaluation of the relative performances of the two CFS versions. After the dual bias corrections, CFSv2 has slightly better correlation skill than CFSv1 for most months and lead times, with approximately equal skills for forecasts not traversing the ENSO predictability barrier and better skills for most (particularly long-lead) predictions traversing the barrier. The overall difference in correlation skill is not statistically field significant. However, CFSv2 has statistically significantly improved amplitude bias, and visibly better probabilistic reliability, and lacks target month slippage as compared with CFSv1. Together, all of the above improvements result in a highly significantly reduced overall RMSE—the metric most indicative of final accuracy.  相似文献   

15.
The present study suggests that the off-equatorial North Atlantic (NATL) SST warming plays a significant role in modulating El Niño teleconnection and its impact on the North Atlantic and European regions. The El Niño events accompanied by NATL SST warming exhibit south-north dipole pattern over the Western Europe to Atlantic, while the ENSO teleconnection pattern without NATL warming exhibits a Rossby wave-like pattern confined over the North Pacific and western Atlantic. Especially, the El Niño events with NATL warming show positive (negative) geopotential-height anomalies over the North Atlantic (Western Europe) which resemble the negative phase of the NAO. Consistently, it is shown using a simple statistical model that NATL SSTA in addition to the tropical Pacific SSTA leads to better prediction on regional climate variation over the North Atlantic and European regions. This role of NATL SST on ENSO teleconnection is also validated and discussed in a long term simulation of coupled global circulation model (CGCM).  相似文献   

16.
春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系   总被引:1,自引:0,他引:1  
利用1951—2016年HadISST逐月海表温度(Sea Surface Temperature,SST)资料,NCEP/NCAR再分析资料以及1958—2016年美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)提供的OAFlux数据集,运用经验正交函数分解(Empirical Orthogonal Function,EOF)和偏相关分析等统计方法,研究了春季北大西洋海温异常的主要特征及其与春季NAO和前期冬季ENSO联系。结果表明:春季北大西洋海温异常EOF的第一模态是自北而南出现的三极结构的海温距平型,其方差贡献率为35.7%。春季北大西洋三极型海温异常的形成主要受到春季NAO主导作用,还受到前期冬季热带中东太平洋海温异常的影响。消除前期冬季Niňo3.4的影响后,春季北大西洋三极型海温异常指数与同期北大西洋涛动(North Atlantic Oscillation,NAO)指数的偏相关系数分别为0.50,通过了99%置信度水平的显著性检验。消除春季NAO的影响后,春季北大西洋三极型海温异常指数与前期冬季Niňo3.4指数的偏相关系数为-0.26,通过了95%信度水平的显著性检验。春季NAO正(负)位相引起的海表风场和海表湍流热通量的异常,进而激发出正(负)位相的北大西洋三极型海温异常。前期冬季ENSO事件可以引起春季大气环流异常和热带外海温异常,进而调制春季NAO对北大西洋三极型海温异常的影响。  相似文献   

17.
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.  相似文献   

18.
Climatic variability has profound effects on the distribution, abundance and catch of oceanic fish species around the world. The major modes of this climate variability include the El Niño-Southern Oscillation (ENSO) events, the Pacific Decadal Oscillation (PDO) also referred to as the Interdecadal Pacific Oscillation (IPO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the North Atlantic Oscillation (NAO). Other modes of climate variability include the North Pacific Gyre Oscillation (NPGO), the Atlantic Multidecadal Oscillation (AMO) and the Arctic Oscillation (AO). ENSO events are the principle source of interannual global climate variability, centred in the ocean–atmosphere circulations of the tropical Pacific Ocean and operating on seasonal to interannual time scales. ENSO and the strength of its climate teleconnections are modulated on decadal timescales by the IPO. The time scale of the IOD is seasonal to interannual. The SAM in the mid to high latitudes of the Southern Hemisphere operates in the range of 50–60 days. A prominent teleconnection pattern throughout the year in the Northern Hemisphere is the North Atlantic Oscillation (NAO) which modulates the strength of the westerlies across the North Atlantic in winter, has an impact on the catches of marine fisheries. ENSO events affect the distribution of tuna species in the equatorial Pacific, especially skipjack tuna as well as the abundance and distribution of fish along the western coasts of the Americas. The IOD modulates the distribution of tuna populations and catches in the Indian Ocean, whilst the NAO affects cod stocks heavily exploited in the Atlantic Ocean. The SAM, and its effects on sea surface temperatures influence krill biomass and fisheries catches in the Southern Ocean. The response of oceanic fish stocks to these sources of climatic variability can be used as a guide to the likely effects of climate change on these valuable resources.  相似文献   

19.
北美偶极子(NAD)是热带北大西洋西部和北美东北部的南北向海平面气压异常偶极型模态.以往的观测研究表明,NAD可以有效地影响ENSO事件的爆发.本文利用全球耦合模式FGOALS-g2,评估了NAD与ENSO的关系.结果表明,该模式能较好地重现NAD模态.进一步的分析验证了冬季NAD可以通过强迫冬末春初副热带东北太平洋上空的反气旋和暖海温的出现,在随后的冬季触发El Ni?o事件.此外,在同化NAD实验中,发生El Ni?o事件的概率增加了将近一倍.相比之下,NAO未能在副热带东北太平洋上空引起表面风和海温的异常,因而不能有效地激发次年冬季ENSO事件.  相似文献   

20.
Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号