首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the internal structure of asteroids, which are crucial for understanding their impact history and for hazard mitigation, appear to be in conflict for the S-type asteroids, Eros, Gaspra, and Ida. Spacecraft images and geophysical data show that they are fractured, coherent bodies, whereas models of catastrophic asteroidal impacts, family and satellite formation, and studies of asteroid spin rates, and other diverse properties of asteroids and planetary craters suggest that such asteroids are gravitationally bound aggregates of rubble. These conflicting views may be reconciled if 10-50 km S-type asteroids formed as rubble piles, but were later consolidated into coherent bodies. Many meteorites are breccias that testify to a long history of impact fragmentation and consolidation by alteration, metamorphism, igneous and impact processes. Ordinary chondrites, which are the best analogs for S asteroids, are commonly breccias. Some may have formed in cratering events, but many appear to have formed during disruption and reaccretion of their parent asteroids. Some breccias were lithified during metamorphism, and a few were lithified by injected impact melt, but most are regolith and fragmental breccias that were lithified by mild or moderate shock, like their lunar analogs. Shock experiments show that porous chondritic powders can be consolidated during mild shock by small amounts of silicate melt that glues grains together, and by friction and pressure welding of silicate and metallic Fe,Ni grains. We suggest that the same processes that converted impact debris into meteorite breccias also consolidated asteroidal rubble. Internal voids would be partly filled with regolith by impact-induced seismic shaking. Consolidation of this material beneath large craters would lithify asteroidal rubble to form a more coherent body. Fractures on Ida that were created by antipodal impacts and are concentrated in and near large craters, and small positive gravity anomalies associated with the Psyche and Himeros craters on Eros, are consistent with this concept. Spin data suggest that smaller asteroids 0.6-6 km in size are unconsolidated rubble piles. C-type asteroids, which are more porous than S-types, and their analogs, the volatile-rich carbonaceous chondrites, were probably not lithified by shock.  相似文献   

2.
New spectrophotometric observations of the Wolf-Rayet system HD 50896 are presented and interpreted in terms of its binary nature. The lines of N V, N IV and C IV show moderate variations, which can be explained using a binary model with a compact companion. He n λ4686 appears to arise from a larger region compared to other lines. The distortion caused by the wind can partly explain its flux variations. The emission fluxes of He I lines are generally constant indicating their non-participation in the orbit. The results are compared with other Wolf-Rayet binaries (V444 Cyg and CQ Cep) and the evolutionary status is discussed.  相似文献   

3.
The chemically peculiar (CP) stars of the upper main sequence are perfect tracers for several astrophysical processes. Their study especially in open clusters further helps to establish their evolutionary status. The latter is most important to understand the origin and evolution of the CP phenomenon, i.e. the connection between diffusion and a stellar magnetic field. There are two important topics, we cover with this paper. First of all, we investigate the reliability of the CCD Δa photometry for fainter objects in open clusters. The latter method is able to detect CP stars very efficiently, but still a spectroscopic verification is needed to verify the photometric candidates. On the other hand, already published spectral classifications on the basis of photographic plates and prism technology have tobe tested with modern instruments. Classification resolution spectroscopy is presented for thirty five bona‐fide CP candidates. Twenty six of them are located within the boundaries of fourteen open clusters, for which we also investigated their membership probabilities. Apart from five objects, they seem tobe members of the respective clusters. The objects were classified in the framework of a refined Morgan‐Keenan system with the extension of well established CP star spectra. We confirm the CP nature of all but one target. The results of Δa photometry and the spectral classifications are in excellent agreement. For the cluster members we find a continuous sequence of CP stars from 10 to 850 Myr, the whole range of investigated cluster ages (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We calculate the spectral energy distribution (SED) of electromagnetic radiation and the spectrum of high-energy neutrinos from BL Lac objects in the context of the synchrotron proton blazar model. In this model, the high-energy hump of the SED is due to accelerated protons, while most of the low-energy hump is due to synchrotron radiation by co-accelerated electrons. To accelerate protons to sufficiently high energies to produce the high-energy hump, rather high magnetic fields are required. Assuming reasonable emission region volumes and Doppler factors, we then find that in low-frequency peaked BL Lacs (LBLs), which have higher luminosities than high-frequency peaked BL Lacs (HBLs), there is a significant contribution to the high-frequency hump of the SED from pion photoproduction and subsequent cascading, including synchrotron radiation by muons. In contrast, in HBLs we find that the high-frequency hump of the SED is dominated by proton synchrotron radiation. We are able to model the SED of typical LBLs and HBLs, and to model the famous 1997 flare of Markarian 501. We also calculate the expected neutrino output of typical BL Lac objects, and estimate the diffuse neutrino intensity due to all BL Lacs. Because pion photoproduction is inefficient in HBLs, as protons lose energy predominantly by synchrotron radiation, the contribution of LBLs dominates the diffuse neutrino intensity. We suggest that nearby LBLs may well be observable with future high-sensitivity TeV γ-ray telescopes.  相似文献   

5.
A 1-D collisional Monte Carlo model of Europa's atmosphere is described in which the sublimation and sputtering sources of H2O molecules and their molecular fragments are accounted for as well as the radiolytically produced O2. Dissociation and ionization of H2O and O2 by magnetospheric electron, solar UV-photon and photo-electron impact, and collisional ejection from the atmosphere by the low-energy plasma are taken into account. Reactions with the surface are discussed, but only adsorption and atomic oxygen recombination are included in this model. The size of the surface-bounded oxygen atmosphere of Europa is primarily determined by a balance between atmospheric sources from irradiation of the satellite's icy surface by the high-energy magnetospheric charged particles and atmospheric losses from collisional ejection by the low-energy plasma, photo- and electron-impact dissociation, and ionization and pick-up from the surface-bounded atmosphere. A range of sources rates for O2 to H2O are used with a larger oxygen-to-water ratio than suggested by laboratory measurements in order to account for differences in adsorption onto grains in the regolith. These calculations show that the atmospheric composition is determined by both the water and oxygen photochemistry in the near-surface region, escape of suprathermal oxygen and water into the jovian system, and the exchange of radiolytic water products with the porous regolith. For the electron impact ionization rates used, pick-up ionization is the dominant oxygen loss process, whereas photo-dissociation and atmospheric sputtering are the dominant sources of neutral oxygen for Europa's neutral torus. Including desorption and loss of water enhances the supply of oxygen species to the neutral torus, but hydrogen produced by radiolysis is the dominant source of neutrals for Europa's torus in these models.  相似文献   

6.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   

7.
We present the first models of Jupiter and Saturn to couple their evolution to both a radiative-atmosphere grid and to high-pressure phase diagrams of hydrogen with helium and other admixtures. We find that prior calculated phase diagrams in which Saturn's interior reaches a region of predicted helium immiscibility do not allow enough energy release to prolong Saturn's cooling to its known age and effective temperature. We explore modifications to published phase diagrams that would lead to greater energy release, and propose a modified H-He phase diagram that is physically reasonable, leads to the correct extension of Saturn's cooling, and predicts an atmospheric helium mass fraction Yatmos=0.185, in agreement with recent estimates. We also explore the possibility of internal separation of elements heavier than helium, and find that, alternatively, such separation could prolong Saturn's cooling to its known age and effective temperature under a realistic phase diagram and heavy element abundance (in which case Saturn's Yatmos would be solar but heavier elements would be depleted). In none of these scenarios does Jupiter's interior evolve to any region of helium or heavy-element immiscibility: Jupiter evolves homogeneously to the present day. We discuss the implications of our calculations for Saturn's primordial core mass.  相似文献   

8.
The structure and magnitude of the electromagnetic field produced by a rotating accretion disk around a black hole were determined. The disk matter is assumed to be a magnetized plasma with a frozenin poloidal magnetic field. The vacuum approximation is used outside the disk.  相似文献   

9.
Aegaeon (Saturn LIII, S/2008 S1) is a small satellite of Saturn that orbits within a bright arc of material near the inner edge of Saturn’s G-ring. This object was observed in 21 images with Cassini’s Narrow-Angle Camera between June 15 (DOY 166), 2007 and February 20 (DOY 051), 2009. If Aegaeon has similar surface scattering properties as other nearby small saturnian satellites (Pallene, Methone and Anthe), then its diameter is approximately 500 m. Orbit models based on numerical integrations of the full equations of motion show that Aegaeon’s orbital motion is strongly influenced by multiple resonances with Mimas. In particular, like the G-ring arc it inhabits, Aegaeon is trapped in the 7:6 corotation eccentricity resonance with Mimas. Aegaeon, Anthe and Methone therefore form a distinctive class of objects in the Saturn system: small moons in corotation eccentricity resonances with Mimas associated with arcs of debris. Comparisons among these different ring-arc systems reveal that Aegaeon’s orbit is closer to the exact resonance than Anthe’s and Methone’s orbits are. This could indicate that Aegaeon has undergone significant orbital evolution via its interactions with the other objects in its arc, which would be consistent with the evidence that Aegaeon’s mass is much smaller relative to the total mass in its arc than Anthe’s and Methone’s masses are.  相似文献   

10.
The origin of Titan’s atmospheric methane is a key issue for understanding the origin of the saturnian satellite system. It has been proposed that serpentinization reactions in Titan’s interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan’s planetesimals before its formation. Here, we point out that serpentinization reactions in Titan’s interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan’s water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan’s interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite’s planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan’s interior can be up to ∼1300 times the current mass of atmospheric methane.  相似文献   

11.
Comet 1996 B2 (Hyakutake) displayed strong evidence for break-up, with a prominent antisunward dust spike and fragments traveling antisunward for many days after an eruptive event in late March 1996. Because of its high orbital inclination and rapid southward motion after perihelion, its post-perihelion activity was not well monitored from the ground. The SWAN all-sky Lyman-alpha camera on the SOHO spacecraft was ideally placed for long-term monitoring of the hydrogen coma of Comet Hyakutake both before and after perihelion. The SWAN images were analyzed with a new time-resolved model (TRM) that provides daily averages of the water production rate and an estimate of the hydrogen atom lifetime (dominated by charge exchange with solar wind protons) during extended periods throughout the apparition. A long-term variation of water production rate of , where r is the heliocentric distance in AU was found. The daily average values of the production rate covered the March 19 outburst and two more outbursts seen in the April before perihelion, which had progressively shorter durations at respectively smaller heliocentric distances. The long-term variation of the production rate was found to be consistent with the seasonal effect predicted by the jet rotation model of Schleicher and Woodney [2003. Analyses of dust coma morphology of Comet Hyakutake (1996 B2) near perigee: Outburst behavior, jet motion, source region locations, and the nucleus pole orientation. Icarus 162, 190-213] when added to a more steady source that is about two-thirds of the maximum of the jet source. The seasonal effect in their model found the dust jet source largely not illuminated after perihelion, coinciding with somewhat reduced overall activity and the absence of outbursts and fragmentation. The locations of the dust jets appear to be responsible for the outbursts and fragmentation before perihelion. The erratic behavior of the pre-perihelion jet sources as contrasted with the smoother variation from the rest of the surface after perihelion indicates there is a strong heterogeneity in the physical make-up of active areas on the nucleus.  相似文献   

12.
K. Tsiganis  H. Varvoglis 《Icarus》2003,166(1):131-140
A population of 23 asteroids is currently observed in a very unstable region of the main belt, the 7/3 Kirkwood gap. The small size of these bodies—with the notable exception of (677) Aaltje (∼30 km)—as well as the computation of their dynamical lifetimes (3<TD<172 Myr) shows that they cannot be on their primordial orbits, but were recently injected in the resonance. The distribution of inclinations appears to be bimodal, the two peaks being close to 2° and 10°. We argue that the resonant population is constantly being replenished by the slow leakage of asteroids from both the Koronis (I∼2°) and Eos (I∼10°) families, due to the drift of their semi-major axes, caused by the Yarkovsky effect. Assuming previously reported values for the Yarkovsky mean drift rate, we calculate the flux of family members needed to sustain the currently observed population in steady state. The number densities with respect to semi-major axis of the observed members of both families are in very good agreement with our calculations. The fact that (677) Aaltje is currently observed in the resonance is most likely an exceptional event. This asteroid should not be genetically related to any of the above families. Its size and the eccentricity of its orbit suggest that the Yarkovsky effect should have been less efficient in transporting this body to the resonance than close encounters with Ceres.  相似文献   

13.
S. Marchi  M. Lazzarin  S. Magrin 《Icarus》2005,175(1):170-174
We present new visible and near-infrared spectroscopic observations of 4 small, previously unclassified, near-Earth objects (NEOs). They appear to have basaltic surfaces, and hence they can be classified as V-types. Their visible spectra exhibit a closer spectral match with the Main-Belt (MB) Asteroid (4) Vesta than the other, presently known, V-type NEOs and MB asteroids. The near-infrared spectrum of Asteroid 2003 FT3 shows—for the first time among NEOs—a peculiar shape of the 1 μm band, maybe suggesting an overabundance of olivine compared to the other V-types and to (4) Vesta. The presence of V-type objects among NEOs may be a consequence of the delivery processes connecting the inner MB to the near-Earth region. On the basis of the orbital parameters of the NEOs presented here, both the resonances (3:1 and ν6), usually considered as the most relevant gateways for the production of near-Earth asteroids, should have been active to transfer the bodies from the MB region.  相似文献   

14.
We present Cassini data revealing that protons between a few keV and about 100 keV energy are not stably trapped in Saturn's inner magnetosphere. Instead these ions are present only for relatively short times following injections. Injected protons are lost principally because the neutral gas cloud converts these particles to energetic neutral atoms via charge exchange. At higher energies, in the MeV to GeV range, protons are stably trapped between the orbits of the principal moons because the proton cross-section for charge exchange is very small at such energies. These protons likely result from cosmic ray albedo neutron decay (CRAND) and are lost principally to interactions with satellite surfaces and ring particles during magnetospheric radial diffusion. A main result of this work is to show that the dominant energetic proton loss and source processes are a function of proton energy. Surface sputtering by keV ions is revisited based on the reduced ion intensities observed. Relatively speaking, MeV ion and electron weathering is most important closer to Saturn, e.g. at Janus and Mimas, whereas keV ion weathering is most important farther out, at Dione and Rhea.  相似文献   

15.
We present results from coronagraphic imaging of Mercury’s sodium tail over a 7° field of view. Several sets of observations made at the McDonald Observatory since May 2007 show a tail of neutral sodium atoms stretching more than 1000 Mercury radii (Rm) in length, or a full degree of sky. However, no tail was observed extending beyond 120 Rm during the January 2008 MESSENGER fly-by period, or during a similar orbital phase of Mercury in July 2008. Large changes in Mercury’s heliocentric radial velocity cause Doppler shifts about the Fraunhofer absorption features; the resultant change in solar flux and radiation pressure is the primary cause of the observed variation in tail brightness. Smaller fluctuations in brightness may exist due to changing source rates at the surface, but we have no explicit evidence for such changes in this data set. The effects of radiation pressure on Mercury’s escaping atmosphere are investigated using seven observations spanning different orbital phases. Total escape rates of atmospheric sodium are estimated to be between 5 and 13 × 1023 atoms/s and show a correlation to radiation pressure. Candidate sources of Mercury’s sodium exosphere include desorption by UV sunlight, thermal desorption, solar wind channeled along Mercury’s magnetic field lines, and micro-meteor impacts. Wide-angle observations of the full extent of Mercury’s sodium tail offer opportunities to enhance our understanding of the time histories of these source rates.  相似文献   

16.
关于"长河二号"导航系统的时间同步及授时   总被引:3,自引:0,他引:3  
对“长河二号“导航系统的时间同步及快速恢复等问题作了讨论,提出了利用BPL长波信号、GPS共视或搬运钟等方法来实现时间同步和增加授时功能的方案.最后,给出了“长河二号“东海台链的主台信号与国家授时中心的UTC(NTSC)之间的同步实验结果.  相似文献   

17.
David Horne  Michael D. Smith 《Icarus》2009,200(1):118-128
The Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument has returned over 200 million thermal infrared spectra of Mars taken between March 1999 and August 2004. This represents one of the most complete records of spatial and temporal changes of the martian atmosphere ever recorded by an orbiting spacecraft. Previous reports of the standard TES retrieval of aerosol optical depth have been limited to those observations taken over surfaces with temperatures above 210 K, limiting the spatiotemporal coverage of Polar Regions with TES. Here, we present an extension to the standard TES retrieval that better models the effects of cold surfaces below 200 K. This modification allows aerosol optical depth to be retrieved from TES spectra over a greater spatiotemporal range than was previously possible, specifically in Polar Regions. This new algorithm is applied to the Polar Regions to show the seasonal variability in dust and ice optical depth for the complete temporal range of the TES database (Mars Year 24, Ls=104°, 1 March 1999 to Mars Year 24, Ls=82°, 31 August 2004).  相似文献   

18.
假设位于黑洞赤道面上做圆形轨道运动的吸积盘是几何薄、光学厚的.利用光子追踪法计算在Kerr度规下的光子运动轨迹,通过数值计算研究薄吸积盘的相对论谱线轮廓及成像.在大角度观测时,吸积盘下表面的光子对谱线轮廓及成像的影响是显著的.  相似文献   

19.
We have performed high-resolution spectral observations at mid-infrared wavelengths of C2H6 (12.16 μm), and C2H2 (13.45 μm) on Saturn. These emission features probe the stratosphere of the planet and provide information on the hydrocarbon photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer Celeste, in conjunction with the McMath-Pierce 1.5-m solar telescope in November and December 1994. We used Voyager IRIS CH4 observations (7.67 μm) to derive a temperature profile on the saturnian atmosphere for the region of the stratosphere. This profile was then used in conjunction with height-dependent volume mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. Our ground-based measurements indicate abundances of for C2H6 (1.0 mbar pressure level), and for C2H2 (1.6 mbar pressure level). We also derived new mixing ratios from the Voyager mid-latitude IRIS observations; 8.6±0.9×10−6 for C2H6 (0.1-3.0 mbar pressure level), and 1.6±0.2×10−7 for C2H2 (2.0 mbar pressure level).  相似文献   

20.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号