首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the hydrometeorology of eastern Asia during April 1995 simulated by the Regional Climate System Model. The amount and location of simulated monthly precipitation agrees well with observations. Soil water content variation was closely correlated with precipitation. Land-surface evaporation and the surface energy budget were strongly controlled by soil moisture content. A sensitivity test with reduced initial soil moisture content suggested that near-surface soil moisture spins up quickly after heavy precipitation events. However, variations in the initial soil moisture field may alter details of the simulated precipitation which can introduce further complexity in climate simulations.  相似文献   

2.
3.
The Atmospheric Model Intercomparison Project (AMIP) conducted simulations by 30 different atmospheric general circulation models forced by observed sea surface temperatures for the 10-year period, 1979–1988. These models include a variety of different soil moisture parameterizations which influence their simulations of the entire land surface hydrology, including evaporation, soil moisture, and runoff, and their simulations of the energy balance at the surface. Here we compare these parameterizations, and evaluate their simulations of soil moisture by comparing them with actual observations of soil moisture, literally ground truth. We compared model-generated ‘data sets' and simulations of soil moisture with observations from 150 stations in the former Soviet Union for 1979–1985 and Illinois for 1981–1988. The spatial patterns, mean annual cycles, and interannual variations were compared to plant-available soil moisture in the upper 1 m of soil. The model-generated ‘data sets' are quite different from the observations, and from each other in many regions, even though they use the same bucket model calculation method. The AMIP model simulations are also quite different from each other, especially in the tropics. Models with 15-cm field capacities do not capture the observed large high latitude values of soil moisture. In addition, none of the models properly simulate winter soil moisture variations in high latitudes, keeping soil moisture constant, while observations show that soil moisture varies in the winter as much as in other seasons. The observed interannual variations of soil moisture were not captured by any of the AMIP models. Several models have large soil moisture trends during the first year or two of the AMIP simulations, with potentially large impacts on global hydrological cycle trends and on other climate elements. This is because the simulations were begun without spinning up the soil moisture to the model climatology. The length of time it took for each to reach equilibrium depended on the particular parameterization. Although observed temporal autocorrelation time scales are a few months, some models had much longer time scales than that. In particular, the three parameterizations based on the Simple Biosphere model (SiB) had trends in some regions for virtually the entire AMIP simulation period.  相似文献   

4.
The land-surface flux model (PROGSURF) designed jointly at the Universities of Vienna and Budapest is reviewed; it belongs to the broad spectrum of PILPS1 models. PROGSURF comprises one vegetation layer and three soil layers. Temperature prediction is made by the heat conduction equation in conjunction with the force-restore method. Turbulent heat fluxes are parameterized by gradient laws using the resistance concept. The formula for the canopy surface resistance involves both a parameter describing atmospheric demand and one describing moisture availability. Soil moisture prediction is made with Richards' equation. PROGSURF is tested in off-line mode for the Cabauw data set. The observed annual mean values of the state and flux quantities at the earth's surface are well reproduced. For example, the model yields latent and sensible heat fluxes of −35.3 and −2.4 W/m2, respectively; evapotranspiration and runoff is −449 and 326 mm/yr; and root zone soil moisture content is 0.344 m3/m3. Further, the seasonal changes of water and energy balance components are well simulated. The sensitivity of PROGSURF to the canopy resistance formulation is analysed. We find that the atmospheric demand is largely represented by the saturation value of the evapotranspiration/soil moisture curve with maximum summer impact upon the annual value and further that the moisture availability is represented by the slope of the evapotranspiration curve. Both saturation value and slope control the amplitude of the seasonal fluctuation of the water balance components; at Cabauw site the saturation value is the governing parameter. These results fit satisfactorily into the other PILPS models. In particular, we are able to reproduce with PROGSURF the total variability of most other PILPS models by simply changing the atmospheric demand and soil moisture availability parameters. PROGSURF presently serves to simulate observed surface fluxes for an atmospheric diagnostic model.  相似文献   

5.
This study documents the new PLACE soil hydrology model, and examines the effects of various parameterization schemes on the solution of the Richards equation. Richards equation is the basis upon which many of the land surface schemes participating in the PILPS experiments model soil water transport. Generally, the integration is carried out using a coarse model grid, which makes the solution more sensitive to particulars of the parameterization scheme. Parameterization schemes for the lower boundary condition, lateral interflow, and for moisture fluxes between model layers are tested in PLACE using both high and low resolution grids. Simulations were made using PILPS-HAPEX forcing data and soil and vegetation parameters. The soil hydrology model is validated against the annual observed HAPEX soil moisture profiles. The predicted evapotranspiration is also compared to a value computed from the PILPS-HAPEX forcing data using the Penman-Monteith equation.When testing a low-resolution soil grid typical of land surface schemes, predicted soil moisture was found to be highly sensitive to the interpolation method for computing vertical moisture fluxes between model layers. A new interpolation method for low resolution models is proposed and tested. It reproduces the high resolution model results more faithfully, over the entire range of soil moisture, than two methods commonly applied in the literature. Further tests demonstrate that by varying the parameterizations for lower boundary condition and the treatment of lateral flow (collectively called drainage), the predicted total annual evapotranspiration may range between 74% and 97% of the incident precipitation in this case. Both of these parameterizations involve one free parameter, and both are largely unconstrained by the available observations. Good overall agreement between the PLACE predicted and HAPEX observed soil moisture profiles was attained by varying these two PLACE drainage parameters over their respective ranges for a series of model simulations. Root-mean square error tests were then used to determine the set of parameters which corresponded to the best predicted soil moisture profile. However, the best predicted soil moisture profiles do not correspond with the best predicted evapotranspiration. This inconsistency occurs not only for PLACE, but, to varying degrees, for all of the land-surface schemes participating in PILPS-HAPEX.  相似文献   

6.
HAPEX-MOBILHY data, consisting of one year of hourly atmospheric forcing data at Caumont (SAMER No. 3, 43.68°N, 0.1°W) were used repeatedly to run the two-layer Variable Infiltration Capacity (VIC-2L) land-surface scheme until the model reached equilibrium in its water and energy balance. The equilibrium results are compared with one year of weekly soil moisture measurements at different depths, the estimated latent heat fluxes for 35 days of the intensive observation period (IOP), and the accumulated evaporation, runoff and drainage for the entire soya crop season. The latent heat flux comparisons show that VIC-2L tends to underestimate the evaporation due to the low soil moisture in its upper layer. The soil moisture comparison shows that the total soil water content is well simulated in general, but the soil water content in the top 0.5 m is underestimated, especially in May and June. These comparisons suggest that the lack of a mechanism for moving moisture from the lower to the upper soil layer in VIC-2L is the main cause for model error in the HAPEX-MOBILHY application. A modified version of VIC-2L, which has a new feature that allows diffusion of moisture between soil layers, and a 0.1 m thin layer on top of the previous upper layer, is described. In addition, the leaf area index (LAI) and the fraction vegetation cover are allowed to vary at each time step in a manner consistent with the rest PILPS-RICE Workshop, rather than being seasonally fixed. With these modifications, the VIC-2L simulations are re-evaluated. These changes are shown to resolve most of the structural deficiencies in the original version of the model. The sensitivity analysis of the new version of the model to the choices of soil depths and root distribution show that the evapotranspiration and soil moisture at the model equilibrium state are more sensitive to the root distribution than to the soil depth.  相似文献   

7.
Initiated by the need to quantify erosion rates and the impacts of global changes on erosion, several attempts have been made to apply erosion models at regional scales. However, these models have often been directed towards on-site soil erosion estimates, emphasising sheet and rill erosion processes, and disregarding gully erosion, channel erosion and sediment transport. These models are therefore of limited use for the assessment of sediment yield, off-site impacts of erosion, and for the development of environmental management to control these impacts at regional scale. This study analyses and compares three spatially distributed models for the prediction of soil erosion and/or sediment yield at regional scales: the WATEM-SEDEM model that is based on the empirical Revised Universal Soil Loss Equation (RUSLE) in combination with a sediment transport equation, the physics-based Pan European Soil Erosion Risk Assessment model (PESERA), and a newly developed Spatially Distributed Scoring model (SPADS). The three models were applied to 61 Spanish drainage basins and model predictions were evaluated against data on measured reservoir sedimentation rates. Global data sets on land use, climate, elevation and soil characteristics were used as model input for WATEM-SEDEM and SPADS, whereas published soil erosion estimates of PESERA at 1 km2 resolution were used directly. SPADS and WATEM-SEDEM provided best results after separate calibration for basins with a Sediment Delivery Ratio (SDR) higher than 5% and those with an SDR lower than 5%. In this way, SPADS explained 67% of variation in sediment yield, while WATEM-SEDEM explained 48% of the variation. PESERA represents a promising alternative to the use of empirical models at the regional scale as it can be applied to very diverse environments with little calibration. However, PESERA provides soil erosion rates and not sediment yield estimates. For most basins PESERA soil erosion rates vary between fifty and close to zero percent of total sediment yield. Two major factors may explain this discrepancy between modelled soil erosion rates and measured sediment yield. First, it may be that PESERA underestimates soil erosion under Mediterranean conditions, although PESERA soil erosion rates are of the same order of magnitude as erosion rates measured in erosion plot studies. Second, gully-, river channel erosion and sediment transport processes may be much more important than sheet- and rill erosion for regional scale sediment yield in these environments. These issues therefore require further attention in future model development. Although spatially lumped models provide better predictions of sediment yield at the basin scale, and while validation of the predicted spatial patterns of sources and sinks of sediment requires further research, spatially distributed models are expected to be of value to support management decisions regarding the assessment of on-site and off-site impacts of erosion at the regional scale.  相似文献   

8.
Atmospheric and land surface data collected from the HAPEX-MOBILHY field experiment were used to compare the bare soil evaporation simulations of 13 land surface schemes and to examine the relationship between differences in evaporation and differences in soil moisture. For a 120-day period in which there was no vegetation present, computed total evaporation ranged between 100 and 250 mm. This large range in evaporation was not related to soil moisture differences. Prescribing surface soil moisture and temperature did not reduce the range in evaporation and instead the range was increased. The models' predictions of evaporation were in closer agreement with each other when they were allowed to select their own surface conditions than when they were forced to use the same conditions. The bare soil evaporation formulations used by the land-surface schemes are not consistent with each other and these inconsistencies produce widely-varying bare soil evaporation rates. The range in bare soil evaporation is unlikely to be reduced by improving the simulation of soil moisture and instead an assessment of why the bare soil evaporation formulations are inconsistent is required.  相似文献   

9.
The Antarctic Dry Valleys (ADV) are generally classified as a hyper-arid, cold-polar desert. The region has long been considered an important terrestrial analog for Mars because of its generally cold and dry climate and because it contains a suite of landforms at macro-, meso-, and microscales that closely resemble those occurring on the martian surface. The extreme hyperaridity of both Mars and the ADV has focused attention on the importance of salts and brines on soil development, phase transitions from liquid water to water ice, and ultimately, on process geomorphology and landscape evolution at a range of scales on both planets. The ADV can be subdivided into three microclimate zones: a coastal thaw zone, an inland mixed zone, and a stable upland zone; zones are defined on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity. Subtle variations in these climate parameters result in considerable differences in the distribution and morphology of: (1) macroscale features (e.g., slopes and gullies); (2) mesoscale features (e.g., polygons, including ice-wedge, sand-wedge, and sublimation-type polygons, as well as viscous-flow features, including solifluction lobes, gelifluction lobes, and debris-covered glaciers); and (3) microscale features (e.g., rock-weathering processes/features, including salt weathering, wind erosion, and surface pitting). Equilibrium landforms are those features that formed in balance with environmental conditions within fixed microclimate zones. Some equilibrium landforms, such as sublimation polygons, indicate the presence of extensive near-surface ice; identification of similar landforms on Mars may also provide a basis for detecting the location of shallow ice. Landforms that today appear in disequilibrium with local microclimate conditions in the ADV signify past and/or ongoing shifts in climate zonation; understanding these shifts is assisting in the documentation of the climate record for the ADV. A similar type of landform analysis can be applied to the surface of Mars where analogous microclimates and equilibrium landforms occur (1) in a variety of local environments, (2) in different latitudinal bands, and (3) in units of different ages. Documenting the nature and evolution of the ADV microclimate zones and their associated geomorphic processes is helping to provide a quantitative framework for assessing the evolution of climate on Mars.  相似文献   

10.
ExoMars is the European Space Agency (ESA) mission to Mars planned for launch in 2018, focusing on exobiology with the primary objective of searching for any traces of extant or extinct carbon-based micro-organisms. The on-surface mission is performed by a near-autonomous mobile robotic vehicle (also referred to as the rover) with a mission design life of 180 sols (Patel et al., 2010). In order to obtain useful data on the tractive performance of the ExoMars rover before flight, it is necessary to perform mobility tests on representative soil simulant materials producing a Martian terrain analogue under terrestrial laboratory conditions. Three individual types of regolith shown to be found extensively on the Martian surface were identified for replication using commercially available terrestrial materials, sourced from UK sites in order to ensure easy supply and reduce lead times for delivery. These materials (also referred to as the Engineering Soil (ES-x) simulants) are: a fine dust analogue (ES-1); a fine aeolian sand analogue (ES-2); and a coarse sand analogue (ES-3). Following a detailed analysis, three fine sand regolith types were identified from commercially available products. Each material was used in its off-the-shelf state, except for ES-2, where further processing methods were used to reduce the particle size range. These materials were tested to determine their physical characteristics, including the particle size distribution, particle density, particle shape (including angularity/sphericity) and moisture content. The results are analysed to allow comparative analysis with existing soil simulants and the published results regarding in situ analysis of Martian soil on previous NASA (National Aeronautics and Space Administration) missions. The findings have shown that in some cases material properties vary significantly from the specifications provided by material suppliers. This has confirmed the need for laboratory testing to determine the actual parameters to prove that standard geotechnical processes are indeed suitable. The outcomes have allowed the confirmation of each simulant material as suitable for replicating their respective regolith types.  相似文献   

11.
A new land surface parameterization scheme (ALSIS), with emphasis on soil moisture prediction, is described and validated with observations from HAPEX-MOBILHY and Cabauw. An important feature of the scheme is the inclusion of vertical heterogeneity of soil hydraulic parameters is modelling unsaturated flow. The simulated soil moisture for HAPEX site using a vertically homogeneous soil has a positive bias in the upper soil layers and a negative bias in the deep soil layers. Taking into account the soil vertical heterogeneity greatly eliminates this discrepancy and results in an excellent agreement between annual cycles of modelled and observed soil moisture profiles. The mean annual soil moisture in the top 1.6 m of soil increased from 394 mm for homogeneous case to 433 mm for the heterogeneous case, consistent with 435 mm observed. The improvement in soil moisture simulation resulted in an improved skill in predicting the mean and the diurnal cycles of surface fluxes for the intensive observational period (28 May–3 July). The simulated monthly averages of surface temperature and fluxes follow observations over the year, except for January when the model overestimates the latent heat flux due to its failure in simulating high rates of dew fall. The deviation of modelled monthly mean surface fluxes from observations are well within the estimated observational errors. The simulated mean daily surface temperature, and surface fluxes are generally consistent with observations, except for some times in the winter period. The modelled diurnal cycles of temperature and fluxes are in agreement with those observed. However, the model overestimates the night-time latent heat flux, especially during January.  相似文献   

12.
The main objective of the Phobos-Grunt spacecraft mission is to sample Phobos soil and delivery it to Earth. Soil sampling is performed by means of a soil sampling device. The article covers the structure of the soil sampling device, its main functions and operation cyclogram.  相似文献   

13.
The Dry Valleys of Antarctica are an excellent analog of the environment at the surface of Mars. Soil formation histories involving slow processes of sublimation and migration of water-soluble ions in polar desert environments are characteristic of both Mars and the Dry Valleys. At the present time, the environment in the Dry Valleys is probably the most similar to that in the mid-latitudes on Mars although similar conditions may be found in areas of the polar regions during their respective Mars summers. It is thought that Mars is currently in an interglacial period, and that subsurface water ice is sublimating poleward. Because the Mars sublimation zones seem to be the most similar to the Antarctic Dry Valleys, the Dry Valleys-type Mars climate is migrating towards the poles. Mars has likely undergone drastic obliquity changes, which means that the Dry Valleys analog to Mars may be valid for large parts of Mars, including the polar regions, at different times in geologic history. Dry Valleys soils contain traces of silicate alteration products and secondary salts much like those found in Mars meteorites. A martian origin for some of the meteorite secondary phases has been verified previously; it can be based on the presence of shock effects and other features which could not have formed after the rocks were ejected from Mars, or demonstrable modification of a feature by the passage of the meteorite through Earth's atmosphere (proving the feature to be pre-terrestrial). The martian weathering products provide critical information for deciphering the near-surface history of Mars. Definite martian secondary phases include Ca-carbonate, Ca-sulfate, and Mg-sulfate. These salts are also found in soils from the Dry Valleys of Antarctica. Results of earlier Wright Valley work are consistent with what is now known about Mars based on meteorite and orbital data. Results from recent and current Mars missions support this inference. Aqueous processes are active even in permanently frozen Antarctic Dry Valleys soils, and similar processes are probably also occurring on Mars today, especially at the mid-latitudes. Both weathering products and life in Dry Valleys soils are distributed heterogeneously. Such variations should be taken into account in future studies of martian soils and also in the search for possible life on Mars.  相似文献   

14.
The evolution of substructure embedded in non-dissipative dark haloes is studied through N -body simulations of isolated systems, both in and out of initial equilibrium, complementing cosmological simulations of the growth of structure. We determine by both analytic calculations and direct analysis of the N -body simulations the relative importance of various dynamical processes acting on the clumps, such as the removal of material by global tides, clump–clump heating, clump–clump merging and dynamical friction. The ratio of the internal clump velocity dispersion to that of the dark halo is an important parameter; as this ratio approaches a value of unity, heating by close encounters between clumps becomes less important, while the other dynamical processes continue to increase in importance. Our comparison between merging and disruption processes implies that spiral galaxies cannot be formed in a protosystem that contains a few large clumps, but can be formed through the accretion of many small clumps; elliptical galaxies form in a more clumpy environment than do spiral galaxies. Our results support the idea that the central cusp in the density profiles of dark haloes is the consequence of self-limiting merging of small, dense haloes. This implies that the collapse of a system of clumps/substructure is not sufficient to form a cD galaxy, with an extended envelope; plausibly, subsequent accretion of large galaxies is required. The post-collapse system is in general triaxial, with rounder systems resulting from fewer, but more massive, clumps. Persistent streams of material from disrupted clumps can be found in the outer regions of the final system, and at an overdensity of around 0.75, can cover 10 to 30 per cent of the sky.  相似文献   

15.
恒星物质的不透明度   总被引:1,自引:0,他引:1  
李焱 《天文学进展》1998,16(2):92-102
简介介绍了恒星物质的透明性质在恒星结构、演化、振动等许多恒星物理基本问题研究中的重要性和决定恒星物质不透明度的物理过程,回顾了第一代不透明度数据LAOL的发展历程与存在的问题,介绍了新一代不透明度数据OPAL的发展和目前观测与理论之间依然不一致的地方。  相似文献   

16.
Comminution, agglutination, and replenishment processes in a lunar soil are modeled by a system of time dependent, linear differential equations. In the model a soil is subdivided into coarse particle, fine particle, and agglutinate fractions. The relative mass abundance of each component in a mature soil is found to be proportional to rates for the reworking processes. Evolution of the grain size distribution from a fresh ejecta blanket to a mature soil is described quantitatively in terms of the changing proportions of the three soil constituents. If size data is available for an immature soil and a mature soil of the same system, rates for the various processes can be calculated under certain simplifying assumptions.  相似文献   

17.
Abstract— Soil 10084 is the only representative soil sample from Apollo 11 and arguably one of the purest mare soils in the Apollo collection. It was wet sieved in 1970 and dry sieved in 1971 with different results. Therefore, some doubt about its grain‐size distribution persists. We consider allocation inhomogeneity, if any, to be a minor cause for the discrepancy. Rather, the difference in methodology is likely to be the major cause for different results. We report the results of a new analysis of an allocation of 0.99 g using the contemporary method of wet sieving at Johnson Space Center; this method uses water instead of freon. Our results show that the mean grain size and sorting of the submillimeter fraction of soil 10084 are 4.28φ (= 51 μm) and 2.23φ (= 213 μm), respectively. A significant proportion (14.2%) of the soil is in the <10 μm size range, which contrasts to previous determinations of 6.4% and 9.8%, respectively. The newly determined grain‐size distribution is skewed towards the finest grain sizes. This result is more compatible with the high maturity of this soil than the results of previous determinations.  相似文献   

18.
水文、大气和海洋对钱德勒摆动的激发   总被引:1,自引:0,他引:1  
分析计算了由陆地上土壤湿度和积雪水当量变化引起的水文变化对钱德勒摆动的激发作用,并将其和大气、海洋激发一起与天文观测激发作了比较.结果表明,虽然水文激发在钱德勒频带上的激发能量很小,只能解释观测激发的平均能量约10%,但是在大气激发的基础上增加水文变化的激发作用,显著提高了与观测激发的相干系数和置信度水平.因此,水文变化对钱德勒摆动的激发作用是值得重视的激发因素之一.  相似文献   

19.
Bullock MA  Stoker CR  McKay CP  Zent AP 《Icarus》1994,107(1):142-154
The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H2O2 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H2O2 in the martian atmosphere and soil is developed. The concentration of H2O2 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H2O2 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H2O2 concentration of 30 nmoles/cm3, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H2O2 lifetimes (up to 10(5) years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approximately 240 nmoles/cm3, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cm3 require lifetimes of greater than 4.3 terrestrial years. For a wide range of H2O2 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H2O2 is not transported, it is plausible that organic compounds, protected from an oxidizing environment, may still exist. They would have been deposited by meteors, or be the organic remains of past life.  相似文献   

20.
A key question in understanding life on Mars under dry(ing) conditions is how arid soils respond to small levels of liquid water. We have conducted a series of simulated rain experiments in the hyperarid core region of the Atacama Desert. Rain amounts from 0.24 to 3.55 mm were applied in the early evening to the soil. We conclude that rain events of less than 1 mm do not saturate the surface, and the soil humidity at the surface remains below 100%. Rain events of 2 mm or more generate free water in the pore space of the soil surface, which may be necessary to support biological activity in the soil. The crust on the surface of the soil is a strong barrier to the diffusion of subsurface moisture and subsequent evaporation. Our results show that once the relative humidity in hyperarid soils begins to fall below 100% the rate of decrease is quite rapid. Thus, the precise value assumed for the limits of life or water activity, do not appreciably change the time of water availability resulting from small desert rains. The Atacama Desert results may be applied to models of (H2O) wetting in the upper soils of Mars due to light rains, melting snow and heavy precipitating fog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号