首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the Advanced Research WRF (ARW) version 3.2.1 has been used to simulate the heavy rainfall event that occurred between 7 and 9 October 2007 in the southern part of Bangladesh. Weather Research and Forecast (WRF–ARW version) modelling system with six different microphysics (MP) schemes and two different cumulus parameterization (CP) schemes in a nested configuration was chosen for simulating the event. The model domains consist of outer and inner domains having 9 and 3 km horizontal resolution, respectively with 28 vertical sigma levels. The impacts of cloud microphysical processes by means of precipitation, wind and reflectivity, kinematic and thermodynamic characteristics of the event have been studied. Sensitivity experiments have been conducted with the WRF model to test the impact of microphysical and cumulus parameterization schemes in capturing the extreme weather event. NCEP FNL data were used for the initial and boundary condition. The model ran for 72 h using initial data at 0000 UTC of 7 October 2007. The simulated rainfall shows that WSM6–KF combination gives better results for all combinations and after that Lin–KF combination. WSM3–KF has simulated, less area average rainfall out of all MP schemes that were coupled with KF scheme. The sharp peak of relative humidity up to 300 hPa has been simulated along the vertical line where maximum updraft has been found for all MPs coupled with KF and BMJ schemes. The simulated rain water and cloud water mixing ratio were maximum at the position where the vertical velocity and reflectivity has also been maximum. The production of rain water mixing ratio depends on MP schemes as well as CP schemes. Rainfall depends on rain water mixing ratio between 950 and 500 hPa. Rain water mixing ratio above 500 hPa level has no effect on surface rain.  相似文献   

2.
In this paper, the performance of a high-resolution mesoscale model for the prediction of severe tropical cyclones over the Bay of Bengal during 2007?C2010 (Sidr, Nargis, Aila, and Laila) is discussed. The advanced Weather Research Forecast (WRF) modeling system (ARW core) is used with a combination of Yonsei University PBL schemes, Kain-Fritsch cumulus parameterization, and Ferrier cloud microphysics schemes for the simulations. The initial and boundary conditions for the simulations are derived from global operational analysis and forecast products of the National Center for Environmental Prediction-Global Forecast System (NCEP-GFS) available at 1°lon/lat resolution. The simulation results of the extreme weather parameters such as heavy rainfall, strong wind and track of those four severe cyclones, are critically evaluated and discussed by comparing with the Joint Typhoon Warning Center (JTWC) estimated values. The simulations of the cyclones reveal that the cyclone track, intensity, and time of landfall are reasonably well simulated by the model. The mean track error at the time of landfall of the cyclone is 98?km, in which the minimum error was found to be for the cyclone Nargis (22?km) and maximum error for the cyclone Laila (304?km). The landfall time of all the cyclones is also fairly simulated by the model. The distribution and intensity of rainfall are well simulated by the model as well and were comparable with the TRMM estimates.  相似文献   

3.
Ensemble prediction methodology based on variations in physical process parameterizations in tropical cyclone track prediction has been assessed. Advanced Research Weather Research and Forecasting model with 30-km resolution was used to make 5-day simulation of the movement of Orissa super cyclone (1999), one of the most intense tropical cyclones over the North Indian Ocean. Altogether 36 ensemble members with all possible combinations of three cumulus convection, two planetary boundary layer and six cloud microphysics parameterization schemes were produced. A comparison of individual members indicated that Kain–Fritsch cumulus convection scheme, Mellor–Yamada–Janjic planetary boundary layer scheme and Purdue Lin cloud microphysics scheme showed better performance. The best possible ensemble formulation is identified based on SPREAD and root mean square error (RMSE). While the individual members had track errors ranging from 96–240 km at 24 h to 50–803 km at 120 h, most of the ensemble predictions show significant betterment with mean errors less than 130 km up to 120 h. The convection ensembles had large spread of the cluster, and boundary layer ensembles had significant error disparity, indicating their important roles in the movement of tropical cyclones. Six-member ensemble predictions with cloud microphysics schemes of LIN, WSM5, and WSM6 produce the best predictions with least of RMSE, and large SPREAD indicates the need for inclusion of all possible hydrometeors in the simulation and that six-member ensemble is sufficient to produce the best ensemble prediction of tropical cyclone tracks over Bay of Bengal.  相似文献   

4.
This study investigates the effects of various combinations of the planetary boundary layer (PBL) schemes and the microphysics schemes on the numerical forecasting of tropical cyclones (TCs). Using different combinations of three PBL schemes (YSU, MYJ and MYNN2) and four microphysics schemes (Ferrier, Goddard, WSM6 and Lin), a number of experiments are carried out for five landed TCs in the South China Sea during 2012. Results show that the combination of the YSU and Ferrier schemes performs the best for the TC track forecasting, although it does not perform the best for the forecast of precipitation. Further analysis reveals that the best performance of the track forecast by the combination of the YSU and Ferrier schemes mainly attributes to a more accurate steering flow as well as TC wind structure produced by this combination. These results provide a valuable reference to the operational numerical forecasting of TC tracks in the future.  相似文献   

5.
Extreme weather events such as cloudburst and thunderstorms are great threat to life and property. It is a great challenge for the forecasters to nowcast such hazardous extreme weather events. Mesoscale model (ARPS) with real-time assimilation of DWR data has been operationally implemented in India Meteorological Department (IMD) for real-time nowcast of weather over Indian region. Three-dimensional variational (ARPS3DVAR) technique and cloud analysis procedure are utilized for real-time data assimilation in the model. The assimilation is performed as a sequence of intermittent cycles and complete process (starting from reception, processing and assimilation of DWR data, running of ARPS model and Web site updation) takes less than 20 minutes. Thus, real-time nowcast for next 3 h from ARPS model is available within 20 minutes of corresponding hour. Cloudburst event of September 15, 2011, and thunderstorm event of October 22, 2010, are considered to demonstrate the capability of ARPS model to nowcast the extreme weather events in real time over Indian region. Results show that in both the cases, ARPS3DVAR and cloud analysis technique are able to extract hydrometeors from radar data which are transported to upper levels by the strong upward motion resulting in the distribution of hydrometeors at various isobaric levels. Dynamic and thermodynamic structures of cloudburst and thunderstorm are also well simulated. Thus, significant improvement in the initial condition is noticed. In the case of cloudburst event, the model is able to capture the sudden collisions of two or more clouds during 09–10 UTC. Rainfall predicted by the model during cloudburst event is over 100 mm which is very close to the observed rainfall (117 mm). The model is able to predict the cloudburst with slight errors in time and space. Real-time nowcast of thunderstorm shows that movement, horizontal extension, and north–south orientation of thunderstorm are well captured during first hour and deteriorate thereafter. The amount of rainfall predicted by the model during thunderstorm closely matches with observation with slight errors in the location of rainfall area. The temporal and spatial information predicted by ARPS model about the sudden collision/merger and broken up of convective cells, intensification, weakening, and maintaining intensity of convective cells has added value to a human forecast.  相似文献   

6.
云微物理参数化方案在数值模式中起着重要的作用,是影响数值天气预报和气候预测准确性的最大因素。系统回顾了中尺度数值模式中云微物理参数化方案的研究进展,并统计分析了最近十余年云微物理参数化方案在中国范围内的敏感性试验研究成果。Lin方案和Rutledge-Hobbs方案奠定了中尺度模式中云微物理参数化方案的基础,其他方案都是直接或间接在这2个方案的基础上从多方面改进而形成的。这些改进主要体现在:①水凝物粒子分类数目;②冰核活化;③粒子谱分布描述函数;④粒子谱截距的取值;⑤粒子间相互转换阈值大小的设定。中国范围内云微物理参数化方案敏感性试验研究成果统计表明,使用WRF模式中Lin方案的模拟效果较好,MM5模式采用Goddard和Reisner方案效果较好。  相似文献   

7.
On Shikoku Island, which is one of the four main islands of Japan, a large number of large-scale crystalline schist landslides have been revealed and are being monitored by an observation system. Seasonal heavy rainfall is the most active meteorological factor that can threaten the stability of this kind of site-specific landslide. In this paper, on the basis of the study of the rainfall-related behavior of a typical crystalline schist landslide, the Zentoku landslide, by analyzing the precisely and continuously observed piezometric and movement data, a method was developed to quantitatively assess the effect of heavy rainfall on a large-scale landslide. The results indicated that heavy rainfall-induced landslide displacement shows good correlation with the variation of groundwater levels. Variations of groundwater level have been simulated with the use of a tank model. The simulation using this model permits the change in water levels for future rainfall events to be predicted. By combining the predicted results with the empirical relation between displacements and water levels, rainfall-induced landslide movement during extreme rainfall events can be estimated in advance. The effect of heavy rainfall on sliding behavior can be quantified in terms of the change in displacement. Thus warning information or advisories for the local residents can be provided.  相似文献   

8.
The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7–13 October, 2014), Phailin (8–14 October, 2013) and Lehar (24–29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC’s track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.  相似文献   

9.
The main meteorological features of catastrophic rainfall events in Catalonia are described. Data come from several sources listed in the text. Surface and upper air synoptic and some subsynoptic conditions under which these events occur are described. Two kinds of events are identified, depending on the amount of forced lift required to release potential instability: Type A events, which take place on the coastal area when the forcing due to littoral and prelittoral hills is enough, and type B events require a large forced lift and occur near the Pyrenees. Local topographical and mesoscale meteorological conditions turn out to have a relevant role in connection with such events.  相似文献   

10.
Obtaining an accurate initial state is recognized as one of the biggest challenges in accurate model prediction of convective events. This work is the first attempt in utilizing the India Meteorological Department (IMD) Doppler radar data in a numerical model for the prediction of mesoscale convective complexes around Chennai and Kolkata. Three strong convective events both over Chennai and Kolkata have been considered for the present study. The simulation experiments have been carried out using fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) mesoscale model (MM5) version 3.5.6. The variational data assimilation approach is one of the most promising tools available for directly assimilating the mesoscale observations in order to improve the initial state. The horizontal wind derived from the DWR has been used alongwith other conventional and non-conventional data in the assimilation system. The preliminary results from the three dimensional variational (3DVAR) experiments are encouraging. The simulated rainfall has also been compared with that derived from the Tropical Rainfall Measuring Mission (TRMM) satellite. The encouraging result from this study can be the basis for further investigation of the direct assimilation of radar reflectivity data in 3DVAR system. The present study indicates that Doppler radar data assimilation improves the initial field and enhances the Quantitative Precipitation Forecasting (QPF) skill.  相似文献   

11.
The analysis of rainfall pattern and indices of extreme rainfall events is performed for two meteorological stations located in the Central Himalayan Region which is highly vulnerable to rain-induced hazards. The records of these rain-induced disasters suggest that such events are generally observed in later part of monsoon season, when soil is saturated after monsoon rains. An attempt is made here to test trends of 19 different extreme rainfall indices that have been widely used in the literature, using daily rainfall data for two urban centres (Nainital and Almora) over the period 1992–2005. We have used statistical tools such as Sen’s method and Mann–Kendall test for detection of trend in annual rainfall, monsoon rainfall, number of rainy days and 1-day extreme rainfall. Principal component analysis gives the correlation between different extreme rainfall indices. Time series of principal components are representing the trends of extreme indices, their variation and interrelation between different indices. The perception study conducted in the same sites indicates that extreme rainfall events and change in rainfall amount and timing are well perceived by the local people.  相似文献   

12.
Episodes of heavy rainfall, although relatively rare, significantly contribute to the hydrological cycle due to the large quantum of rainfall in a short span of time. Accurate simulation of such heavy or extreme rainfall events therefore is an important benchmark for a model. Here, we consider the simulation of three heavy rainfall events (Mumbai, Bangalore and Chennai) that occurred over the Indian monsoon region in different geographical locations and seasons during 2005, using a mesoscale meteorological model, namely MM5V3. Simulations have been carried out at high resolution (2 km) to resolve orographic features and land–ocean gradients over the event locations with a 3-nest, 2-way configuration. The primary objective of this study is to carry out a multi-event, multi-location evaluation of the model configuration for simulating a class of heavy rainfall events and to compare some important meteorological features of the events. Our results have shown that a very high relative humidity, low-level convergence, convective instability in terms of equivalent potential temperature, high vertical velocity, smaller mixing ratio at low level and higher mixing ratio at upper level essentially dominated and sustained the convective dynamics in all the three events. It was also found that the latent heat flux (LHF) dominated coastal events (Mumbai and Chennai) with relatively much higher values compared to sensible heat flux (SHF) throughout the event life cycle. In the case of the Bangalore event, both LHF and SHF are comparable during the event life cycle.  相似文献   

13.
Flood hazard evaluation is an important input for Nuclear Power Plants external events safety studies. In the present study, flood hazard at various nuclear sites in India due to rainfall has been evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment are daily annual maximum rainfall (24?h data). The observed data points have been fitted using Gumbel, power law and exponential distribution, and return period has been estimated. To study the stationarity of rainfall data, a moving window estimate of the parameters has been performed. The rainfall pattern is stationary in both coastal and inland regions over the period of observation. The coastal regions show intense rainfall and higher variability than inland regions. Based on the plant layout, catchment area and drainage capacity, the prototype fast breeder reactor (PFBR) site is unlikely to be flooded.  相似文献   

14.
The very severe cyclonic storm Nargis of 2008 was a strong tropical cyclone that caused the deadliest natural disaster in the history of Myanmar. The time tested NCAR/PSU MM5 model has been used to simulate the Nargis cyclone, which is designed to have two domains covering the Bay of Bengal with horizontal resolutions of 90 and 30?km. The physics options chosen are Kain?CFritsch 2 for convection, Blackadar (BLA), Burk?CThompson, medium range forecast (MRF), Eta Mellor?CYamada (Eta MY) and Gayno?CSeaman (GS) for Planetary Boundary Layer (PBL) and Simple Ice for explicit cloud physics processes. The experiment was conducted with the model integration starting from April 27, 2008, to May 3, 2008. The performance of the five PBL schemes is evaluated in terms of radius height cross-section of the three component winds, surface heat fluxes of sensible heat and latent heat, equivalent potential temperature (?? e ), precipitation, track and variation of Central Surface Pressure and wind speed with time. The numerical results show a large impact of the PBL schemes on the intensity and movement of the system. The intensity of the storm is examined in terms of pressure drop, strength of the surface wind and rainfall associated with the storm. The results are compared to the India Meteorological Department observations. These experiments indicate that the intensity of the storm is well simulated with the Eta MY and BLA with finer resolution. The simulated track with MRF compared well with the Joint Typhoon Warning Center observation at landfall position both with the 90 and 30?km resolutions.  相似文献   

15.
The summer monsoon season of the year 2006 was highlighted by an unprecedented number of monsoon lows over the central and the western parts of India, particularly giving widespread rainfall over Gujarat and Rajasthan. Ahmedabad had received 540.2mm of rainfall in the month of August 2006 against the climatological mean of 219.8mm. The two spells of very heavy rainfall of 108.4mm and 97.7mm were recorded on 8 and 12 August 2006 respectively. Due to meteorological complexities involved in replicating the rainfall occurrences over a region, the Weather Research and Forecast (WRF-ARW version) modeling system with two different cumulus schemes in a nested configuration is chosen for simulating these events. The spatial distributions of large-scale circulation and moisture fields have been simulated reasonably well in this model, though there are some spatial biases in the simulated rainfall pattern. The rainfall amount over Ahmedabad has been underestimated by both the cumulus parameterization schemes. The quantitative validation of the simulated rainfall is done by calculating the categorical skill scores like frequency bias, threat scores (TS) and equitable threat scores (ETS). In this case the KF scheme has outperformed the GD scheme for the low precipitation threshold.  相似文献   

16.
High-impact mesoscale weather events, occurring in different parts of India in all seasons, lead to major weather- and climate-related disasters. Several research groups and operational weather forecasting centres in India have adopted mesoscale models for research and operational usage. This paper reviews the work done by different groups with respect to two specific events, (1) unprecedented locally heavy rainfall near Mumbai (Santa Cruz) on 26 and 27 July 2005 and (2) the Orissa super-cyclone of 29 and 30 October 1999 from its incipient stage on 24 and 25 October 1999. Considerable variability in the prediction of the intensity and location of mesoscale heavy rainfall, as well as in the intensity and path of the super-cyclone, are found. In order to reduce uncertainty in dynamical prediction, it is necessary that the model dynamics, physics, resolution, boundary conditions and availability of data on land–ocean surface processes are tuned separately to the specific event types, such as heavy monsoon rainfall, tropical cyclone genesis and movement and severe local thunderstorms, as the processes controlling such types of events may require suitable treatments for their proper simulations through appropriate dynamics, physics and resolution.  相似文献   

17.
Evaporation capacity is an important factor that cannot be ignored when judging whether extreme precipitation events will produce groundwater recharge. The evaporation layer’s role in groundwater recharge was evaluated using a lysimeter simulation experiment in the desert area of Dunhuang, in the western part of the Hexi Corridor in northwestern China’s Gansu Province. The annual precipitation in the study area is extremely low, averaging 38.87 mm during the 60-year study period, and daily pan evaporation amounts to 2,486 mm. Three simulated precipitation regimes (normal, 10 mm; ordinary annual maximum, 21 mm; and extreme, 31 mm) were used in the lysimeter simulation to allow monitoring of water movement and weighing to detect evaporative losses. The differences in soil-water content to a depth of 50 cm in the soil profile significantly affected rainfall infiltration during the initial stages of rainfall events. It was found that the presence of a dry 50-cm-deep sand layer was the key factor for “potential recharge” after the three rainfall events. Daily precipitation events less than 20 mm did not produce groundwater recharge because of the barrier effect created by the dry sand. Infiltration totaled 0.68 mm and penetrated to a depth below 50 cm with 31 mm of rainfall, representing potential recharge equivalent to 1.7 % of the rainfall. This suggests that only extreme precipitation events offer the possibility of recharge of groundwater in this extremely arid area.  相似文献   

18.
以东南沿海地区花岗岩残积土为代表性土样,以土体斜坡坡度、降雨强度为控制变量,设计了降雨滑坡模拟试验方案,在大雨、暴雨、大暴雨、特大暴雨等四种不同降雨等级条件下对四种不同坡度的斜坡模型进行了强降雨模拟试验,研究降雨强度和斜坡坡度对其滑塌破坏的影响特征。结果表明:降雨强度越大,发生深层破坏或浅层整体破坏的趋势越明显,其变形跨塌滑块尺寸越大,破坏范围越集中,破坏程度增强;同时土体裂纹出现的时间越早,斜坡滑塌破坏所需的降雨时长逐渐减少。随斜坡坡度的增大,破坏形式由滑落滑坡逐步转化散落崩塌破坏,其相应斜坡滑塌破坏所需的降雨时长减少。研究结论对揭示降雨引发残积土滑坡等地质灾害发生规律具有重要的理论和现实意义。  相似文献   

19.
Simulation of a Himalayan cloudburst event   总被引:5,自引:0,他引:5  
Intense rainfall often leads to floods and landslides in the Himalayan region even with rainfall amounts that are considered comparatively moderate over the plains; for example, ‘cloudbursts’, which are devastating convective phenomena producing sudden high-intensity rainfall (∼10 cm per hour) over a small area. Early prediction and warning of such severe local weather systems is crucial to mitigate societal impact arising from the accompanying flash floods. We examine a cloudburst event in the Himalayan region at Shillagarh village in the early hours of 16 July 2003. The storm lasted for less than half an hour, followed by flash floods that affected hundreds of people. We examine the fidelity of MM5 configured with multiple-nested domains (81, 27, 9 and 3 km grid-resolution) for predicting a cloudburst event with attention to horizontal resolution and the cloud microphysics parameterization. The MM5 model predicts the rainfall amount 24 hours in advance. However, the location of the cloudburst is displaced by tens of kilometers  相似文献   

20.
In the present study, diagnostic studies were undertaken using station-based rainfall data sets of selected stations of Guyana to understand the variability of rainfall. The multidecadal variation in rainfall of coastal station Georgetown and inland station Timehri has shown that the rainfall variability was less during the May–July (20–30%) of primary wet season compared to the December--January (60–70%) of second wet season. The rainfall analysis of Georgetown based on data series from 1916 to 2007 shows that El Niño/La Niña has direct relation with monthly mean rainfall of Guyana. The impact is more predominant during the second wet season December--January. A high-resolution Weather Research and Forecasting model was made operational to generate real-time forecasts up to 84 h based on 00 UTC global forecast system (GFS), NCEP initial condition. The model real-time rainfall forecast during July 2010 evaluation has shown a reasonable skill of the forecast model in predicting the heavy rainfall events and major circulation features for day-to-day operational forecast guidance. In addition to the operational experimental forecast, as part of model validation, a few sensitivity experiments are also conducted with the combination of two cloud cumulus (Kain--Fritsch (KF) and Betts–Miller–Janjic (BMJ)) and three microphysical schemes (Ferrier et al. WSM-3 simple ice scheme and Lin et al.) for heavy rainfall event occurred during 28–30 May 2010 over coastal Guyana and tropical Hurricane ‘EARL’ formed during 25 August–04 September 2010 over east Caribbean Sea. It was observed that there are major differences in the simulations of heavy rainfall event among the cumulus schemes, in spite of using the same initial and boundary conditions and model configuration. Overall, it was observed that the combination of BMJ and WSM-3 has shown qualitatively close to the observed heavy rainfall event even though the predicted amounts are less. In the case of tropical Hurricane ‘EARL’, the forecast track in all the six experiments based on 00 UTC of 28 August 2010 initial conditions for the forecast up to 84 h has shown that the combination of KF cumulus and Ferrier microphysics scheme has shown less track errors compared to other combinations. The overall average position errors for all the six experiments taken together work out to 103 km in 24, 199 km in 48, 197 km in 72 and 174 km in 84 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号