首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   

2.
We present a theory for the radiation of high-frequency waves by earthquake faults. We model the fault as a planar region in which the stress drops to the kinematic friction during slip. This model is entirely equivalent to a shear crack. For two-dimensional fault models we show that the high frequencies originate from the stress and slip velocity concentrations in the vicinity of the fault's edges. These stress concentrations radiate when the crack expands with accelerated motion. The most efficient generation of high-frequency waves occurs when the rupture velocity changes abruptly. In this case, the displacement spectrum has an ω-2 behaviour at high frequencies. The excitation is proportional to the intensity of the stress concentration near the crack tips and to the change in the focusing factor due to rupture velocity. We extend these two-dimensional results to more general three-dimensional fault models in the case when the rupture velocity changes simultaneously on the rupture front. Results are similar to those described for two-dimensional faults. We apply the theory to the case of a circular fault that grows at constant velocity and stops suddenly. The present theory is in excellent agreement with a numerical solution of the same problem.
Our results provide upper bounds to the high-frequency radiation from more realistic models in which rupture velocity does not change suddenly. The ω-2 is the minimum possible decay at high frequencies for any crack model of the source.  相似文献   

3.
Summary. Following the classic work of Eshelby, the slip and stress distributions due to an elliptical plane shear crack are evaluated. The relation between average (or maximum) slip on the crack and the (constant) static stress drop, for faults of different aspect ratios, is found. The slip vector is not parallel to the applied stress but makes a small angle to it, except when the stress is applied along the major or minor axis of the ellipse. The stress -distribution around the crack shows that in addition to the expected stress concentration along the crack edge, there are broad regions of stress increase off the crack plane for circular and elliptical cracks, similar to those known to exist for in-plane but not for antiplane shear cracks. Whether the stress- intensity factor at the end of one axis is greater or less than that at the end of the other axis ( ka ≶ kb ), depends on the condition: √ b/a ≶ (1 − v ) where a and b are the semi-axes of the ellipse, ka and kb are the stress-intensity factors at the end of the a- and b -axes and v is Poisson's ratio. The total stress-intensity factor varies smoothly along the edge of the ellipse from one axis to the other and it is found that this variation is rather small.  相似文献   

4.
Most seismic hazard estimations are based on the assumption of a Poisson process for earthquake occurrence, even though both observations and models indicate a departure of real seismic sequences from this simplistic assumption. Instrumental earthquake catalogues show earthquake clustering on regional scales while the elastic rebound theory predicts a periodic recurrence of characteristic earthquakes on longer timescales for individual events. Recent implementations of time-dependent hazard calculations in California and Japan are based on quasi-periodic recurrences of fault ruptures according to renewal models such as the Brownian Passage Time model. However, these renewal models neglect earthquake interactions and the dependence on the stressing history which might destroy any regularity of earthquake recurrences in reality. To explore this, we investigate the (coupled) stress release model, a stochastic version of the elastic rebound hypothesis. In particular, we are interested in the time-variability of the occurrence of large earthquakes and its sensitivity to the occurrence of Gutenberg–Richter type earthquake activity and fault interactions. Our results show that in general large earthquakes occur quasi-periodically in the model: the occurrence probability of large earthquakes is strongly decreased shortly after a strong event and becomes constant on longer timescales. Although possible stress-interaction between adjacent fault zones does not affect the recurrence time distributions in each zone significantly, it leads to a temporal clustering of events on larger regional scales. The non-random characteristics, especially the quasi-periodic behaviour of large earthquakes, are even more pronounced if stress changes due to small earthquakes are less important. The recurrence-time distribution for the largest events is characterized by a coefficient of variation from 0.6 to 0.84 depending on the relative importance of small earthquakes.  相似文献   

5.
A crack model in antiplane shear configuration is shown representing creep processes interpreted in terms of 'viscous' deformation of a narrow plastic layer, characterized by inhomogeneous rheological properties, embedded within a homogeneous elastic medium. The evolution in time of slip and stress over the crack plane is studied through a truncated expansion in Chebyshev polynomials, and convergence is proved to be fast in the simple examples considered. Finite-stress solutions are found which are compatible with constitutive relations of elasto-plastic materials and furthermore these allow us to simulate creep propagation and stress transfer between locked and unlocked fault segments. This model provides a simple interpretation of the shallow depth of the seismogenic layer observed in several areas of the world and lends itself to modelling creep processes during either post-seismic rebound or pre-seismic stress buildup. Stress transfer is accomplished mostly by the slow extension of the creeping section. During a seismic cycle it is envisaged that different regimes dominate over deep, intermediate and shallow sections of faults: (i) slow pre-seismic stress build-up accompanied by creep and stress migration toward intermediate depths; (ii) brittle fracture over shallow and intermediate sections of faults; (iii) post-seismic rebound over intermediate and deep sections of faults. The present crack model, while providing finite-stress solutions, allows a better understanding of how stress may accommodate at different depths over a fault plane during a seismic cycle.  相似文献   

6.
We study the effects of structural inhomogeneity on the quasi-static growth of strike-slip faults. A layered medium is considered, made up of an upper layer bounded by a free surface and welded to a lower half-space with different elastic property. Mode III crack is employed as a mathematical model of strike-slip fault, which is nucleated in the lower half-space and then propagates towards the interface. We adopt FEM-β, newly proposed analysis method for failure, to simulate the quasi-statistic crack growth governed by the stress distribution in layered media. Our results show that along planar traces across interfaces a compliant upper layer has significant effects on promoting/suppressing crack growth before/after its extension into the layer and vice versa for a rigid one. This proposes a possibility that surface breaks due to strike-slip faulting could be arrested by deposit layers at the topmost part of the Earth's crust.  相似文献   

7.
Standard data and methods, such as the inversion of seismic and GPS data, have been used extensively to infer the details of the 2004 December 26 earthquake. The unprecedented large size of this event gave the opportunity to modern altimeters to provide the first clear records of a tsunami in deep ocean, therefore allowing us to study the rupture history from an independent perspective. We invert the Jason-1 and Topex–Poseidon altimetry records, considering the new constraints available on the geometry of the fault plane, and taking them into account in a 3-D rupture model. The data are corrected for the non-negligible effect of satellite motion during measurements. Our results show that the rupture propagated over the 1500 km of subduction zone initially identified by the aftershock distribution, with a magnitude of   M w= 9.1  . Our solution compares well with the latitudinal distribution of slip inferred from other data sets, with a maximum of energy release north of Sumatra, and two other slip patches near the Nicobar and Andaman islands. Based on waveform comparison, we assert that the shallow portion of the megathrust offshore Banda Aceh had slip amplitudes of more than 20 m. Also, we find that significant amounts of slip (about 10 m) concentrated below the Andaman islands and did not propagate on the shallow portion of the interface. Although synthetic tests tend to show less resolution in the northern part of the rupture, this solution is compatible with the near-field data (GPS, coral heads and imagery), and would allow one to explain the apparent paradox between the large local displacements and the moderate tsunami observed locally. Finally, we demonstrate the rapidly dominating effect of propagation and slip distribution over the rupture velocity, and how it precludes the direct estimate of this latter parameter.  相似文献   

8.
Summary. Two-dimensional crack problems in elastic homogeneous isotropic media are considered which describe rupture over a fault surface characterized by non-uniform stress drop. Solutions can be found in which the stress field is finite at the crack tips and the rupture surface is not assigned a priori , but is part of the solution. These crack models are found to be consistent with the frictional stress threshold criterion for slip arrest over pre-existing fault surfaces. A crack is found to stop when its contribution to the stress field is opposite to the stress drop at the crack tips. The quasi-static propagation of a crack up to the arrest configuration is studied in terms of the minimum energy principle. The crack spontaneously propagates in such a way as to make the value of the stress intensity factor at one tip equal to the value at the other tip. Furthermore a tip propagating in a region with higher friction is found to move more slowly than the other tip propagating in a region with lower friction. Simple criteria for fracture arrest are derived, in terms of a properly averaged stress drop. Piecewise constant stress drop profiles are explicitly considered yielding a variety of solutions which can be applied to modelling asperities or barriers over a fault plane. The evaluation of the amount of the energy released during the quasi-static crack propagation shows that stopping phases cannot be efficiently radiated if the crack comes to rest in a low friction region.  相似文献   

9.
We perform analytical and numerical studies of scaling relations of earthquakes and partition of elastic strain energy between seismic and aseismic components using a thermodynamically based continuum damage model. Brittle instabilities occur in the model at critical damage level associated with loss of convexity of the strain energy function. A new procedure is developed for calculating stress drop and plastic strain in regions sustaining brittle instabilities. The formulation connects the damage rheology parameters with dynamic friction of simpler frameworks, and the plastic strain accumulation is governed by a procedure that is equivalent to Drucker–Prager plasticity. The numerical simulations use variable boundary forces proportional to the slip-deficit between the assumed far field plate motion and displacement of the boundary nodes. These boundary conditions account for the evolution of elastic properties and plastic strain in the model region. 3-D simulations of earthquakes in a model with a large strike-slip fault produce scaling relations between the scalar seismic potency, rupture area, and stress drop values that are in good agreement with observations and other theoretical studies. The area and potency of the simulated earthquakes generally follow a linear log–log relation with a slope of 2/3, and are associated with stress drop values between 1 and 10 MPa. A parameter-space study shows that the area-potency scaling is shifted to higher stress drops in simulations with parameters corresponding to lower dynamic friction, more efficient healing, and higher degree of seismic coupling.  相似文献   

10.
A Bayesian approach to estimating tectonic stress from seismological data   总被引:2,自引:0,他引:2  
Earthquakes are conspicuous manifestations of tectonic stress, but the non-linear relationships between the stresses acting on a fault plane, its frictional slip, and the ensuing seismic radiation are such that a single earthquake by itself provides little information about the ambient state of stress. Moreover, observational uncertainties and inherent ambiguities in the nodal planes of earthquake focal mechanisms preclude straightforward inferences about stress being drawn on the basis of individual focal mechanism observations. However, by assuming that each earthquake in a small volume of the crust represents a single, uniform state of stress, the combined constraints imposed on that stress by a suite of focal mechanism observations can be estimated. Here, we outline a probabilistic (Bayesian) technique for estimating tectonic stress directions from primary seismological observations. The Bayesian formulation combines a geologically motivated prior model of the state of stress with an observation model that implements the physical relationship between the stresses acting on a fault and the resultant seismological observation. We show our Bayesian formulation to be equivalent to a well-known analytical solution for a single, errorless focal mechanism observation. The new approach has the distinct advantage, however, of including (1) multiple earthquakes, (2) fault plane ambiguities, (3) observational errors and (4) any prior knowledge of the stress field. Our approach, while computationally demanding in some cases, is intended to yield reliable tectonic stress estimates that can be confidently compared with other tectonic parameters, such as seismic anisotropy and geodetic strain rate observations, and used to investigate spatial and temporal variations in stress associated with major faults and coseismic stress perturbations.  相似文献   

11.
Summary. Earthquake deformations and induced sedimentary structures preserved in Quaternary sediments include faults, folds, fissures, slumps, sand boils and other effects of liquefaction. Such deformations and structures are well preserved in the Lisan deposits of the Dead Sea. Of most importance are the fold-type deformations known as décollement structures which are present all along the eastern side of the Lisan and seem to decrease gradually westwards to disappear in the middle of the Lisan. These may indicate that palaeoearthquakes originating along the Araba fault have triggered such structures due to shaking of elastoplastic unconsolidated sediments over gentle slopes dipping to the west.
Preliminary results from studies on décollement structures preserved in a section representing some 1733 years of continuous deposition in the uppermost? Pleistocene, in the vicinity of Wadi Araba, indicate that: (1) seismic activity has fluctuated with time. Average recurrence period is about 340 ± 20yr for earthquakes with magnitudes greater than or equal to 6.5, Earthquakes with magnitude greater than 7 seem to have occurred along the Araba fault. (2) Deduced earthquake magnitudes conform to the frequency–magnitude relationship: log N = 5.24–0.68 M . (3) The deduced seismic slip rate along the Araba fault seems to be not less than 0.64 ± 0.04 cm yr−1.  相似文献   

12.
A group of three earthquakes in 2000 June in SW Iceland included the two largest earthquakes in Iceland in the past 30 yr. Previously, temporal changes in shear-wave splitting had not been recognized before these earthquakes as there were too few small earthquakes to provide adequate shear-wave data, and they were not stress forecast, even with hindsight. These large earthquakes were subject to a special investigation by the European Community funded PREPARED Project during which the seismic catalogue was extended to include smaller magnitude earthquakes. This more detailed data set, together with a semi-automatic programme for measuring the parameters of shear-wave splitting greatly increased the number of time-delay measurements.
The new measurements displayed the typical temporal variations before larger earthquakes as seen elsewhere: a long-term increase in time delays, interpreted as stress accumulation before the earthquake; and a decrease, interpreted as crack coalescence, immediately prior to the earthquake. The logarithms of the durations of both the implied accumulation of stress and the crack coalescence have the same self-similar relationships to earthquake magnitude as found elsewhere in Iceland. This means that, in principle, the time and magnitude of the larger earthquakes could have been stress forecast in real time had the smaller source earthquakes of the extended catalogue and the improved measuring procedures been available at the time.  相似文献   

13.
A theoretical approach to the propagation of interacting cracks   总被引:2,自引:0,他引:2  
We propose a scheme to compute interaction effects between two randomly oriented cracks under compressive stresses and we discuss the role crack interactions play in the crack coalescence process. Stress intensity factors are computed by using an iterative technique based on the method of successive approximations. Once crack propagation occurs, curved wing cracks grow from the initial crack tips. The stress intensity factors at the wing crack tips are calculated as the sum of two terms: a component for a single wing crack subjected to both the applied stresses and the interaction effect, and a component due to the sliding of the initial crack. We have applied our procedure to various crack geometries. Our results show that interaction effects act on the crack propagation path. For cracks under tension, our approach correctly predicts the curving, hook-shaped paths of interacting cracks that have been observed in various materials. For en echelon compressive cracks, interaction effects depend on the geometry of stepping. For right-stepping cracks, no mode I crack coalescence occurs. A mixedmode propagation criterion may be introduced to check whether coalescing secondary shear fractures initiate. For left-stepping cracks, depending on whether or not there is overlapping, crack coalescence is achieved by tension wing cracks at the inner crack tips. Without overlapping, the growing wing cracks delimit a region where a tensile secondary fracture may develop and lead to coalescence. These results are consistent with previous work and show that our procedure may be now extended to a population of cracks.  相似文献   

14.
Summary. Rock stress measurements in Iceland show maximum horizontal compression perpendicular to the trend of Reykjanes Ridge crest and of its extension, the active volcanic zone of Iceland. Fault-plane solutions of dormant stage earthquakes are consistent with the measured stress orientations, but strike—slip earthquakes associated with volcanic surges and some earthquake swarms in active geothermal areas exhibit apparent reversals of mechanism and are here defined as 'stress-discordant' in the sense that they yield deduced stress orientations 90° from the regional stress field as determined by hydrofracturing and strain relief methods. It is proposed, supported by comparison with the pore-pressure induced Denver earthquakes, that the 'stress-discordant' volcanic earthquakes are triggered by increased pore pressure and probably involve stick-slip motion similar to that reported for some laboratory tests of the pore pressure effect, characterized by gradual onset and sudden stopping of each slip episode. The question is raised as to whether stress-discordant earthquakes are dominated by a stopping phase or terminal shock with consequent reversal of the deduced shear couple. A possible stopping mechanism is suggested: the dilatant stiffening of fault gouge during shear.
It is proposed that direct measurements of stress orientation be made by hydrofracturing tests at other places along the mid-ocean ridge crest and on the margins of the Red Sea and East African rifts. The Icelandic stress data indicate the need for sceptical re-examination of some fundamentals of plate tectonics theory.  相似文献   

15.
Two distinct phases are commonly observed at the initial part of seismograms of large shallow earthquakes: low-frequency and low-amplitude waves following the onset of a P wave ( P 1) are interrupted by the arrival of the second impulsive phase P2 enriched with high-frequency components. This observation suggests that a large shallow earthquake involves two qualitatively different stages of rupture at its nucleation.
We propose a theoretical model that can naturally explain the above nucleation behaviour. The model is 2-D and the deformation is assumed to be anti-plane. A key clement in our model is the assumption of a zone in which numbers of pre-existing cracks are densely distributed; this cracked zone is a model for the fault zone. Dynamic crack growth nucleated in such a zone is intensely affected by the crack interactions, which exert two conflicting effects: one tends to accelerate the crack growth, and the other tends to decelerate it. The accelerating and decelerating effects are generally ascribable to coplanar and non-coplanar crack interactions, respectively. We rigorously treat the multiple interactions among the cracks, using the boundary integral equation method (BIEM), and assume the critical stress fracture criterion for the analysis of spontaneous crack propagation.
Our analysis shows that a dynamic rupture nucleated in the cracked zone begins to grow slowly due to the relative predominance of non-coplanar interactions. This process radiates the P1 phase. If the crack continues to grow, coalescence with adjacent coplanar cracks occurs after a short time. Then, coplanar interactions suddenly begin to prevail and crack growth is accelerated; the P2 phase is emitted in this process. It is interpreted that the two distinct phases appear in the process of the transition from non-coplanar to coplanar interaction predominance.  相似文献   

16.
Summary We consider a long strike-slip fault in a lithosphere modelled as an elastic slab. To the base of the slab a shear stress distribution is applied which simulates the viscous drag exerted by the asthenosphere. The resulant stress on the fault plane may directly fracture the lithosphere in its brittle upper portion; alternatively it may give rise at first to a stable aseismic sliding in the lower portion. In the latter case, stress concentration due to the deep aseismic slip is the relevant feature of the pre-seismic stress acting on the upper section of the lithosphere. The two cases are examined by use of dislocation theory and their observable effects compared. Different depths of the aseismic slip zone and the presence or absence of a uniform friction on the seismic fault are allowed for. If the model is applied to the San Andreas fault region, where a steady sliding condition actually seems to be present at shallow depth, it turns out that the slip amplitudes commonly associated with large earthquakes are consistent with average basal stress values which can be substantially lower than a few bars, a value often quoted as the steady state basal stress due to a velocity gradient in the upper asthenosphere.  相似文献   

17.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

18.
We use GPS displacements collected in the 15 months after the 1999 Chi-Chi, Taiwan earthquake  ( M w 7.6)  to evaluate whether post-seismic deformation is better explained by afterslip or viscoelastic relaxation of the lower crust and upper mantle. We find that all viscoelastic models tested fail to fit the general features in the post-seismic GPS displacements, in contrast to the satisfactory fit obtained with afterslip models. We conclude that afterslip is the dominant mechanism in the 15-month period, and invert for the space–time distribution of afterslip, using the Extended Network Inversion Filter. Our results show high slip rates surrounding the region of greatest coseismic slip. The slip-rate distribution remains roughly stationary over the 15-month period. In contrast to the limited coseismic slip on the décollement, afterslip is prominent there. Maximum afterslip of 0.57 m occurs downdip and to the east of the hypocentral region. Afterslip at hypocentral depths is limited to the southern part of the main shock rupture, with little or no slip on the northern section where coseismic slip was greatest. Whether this results from along strike variations in frictional properties or dynamic conditions that locally favour stable sliding is not clear. In general, afterslip surrounds the area of greatest coseismic slip, consistent with post-seismic slip driven by the main shock stress change. The total accumulated geodetic afterslip moment is  3.8 × 1019 N m  , significantly more than the seismic moment released by aftershocks,  6.6 × 1018 N m  . Afterslip and aftershocks appear to have different temporal evolutions and some spatial correlations, suggesting that aftershock rates may not be completely controlled by the rate of afterslip.  相似文献   

19.
Earthquake prediction: a new physical basis   总被引:16,自引:0,他引:16  
Summary. Subcritical crack growth in the laboratory occurs slowly but progressively in solids subjected to low stresses at low strain rates. The cracks tend to grow parallel to the maximum compressive stress so that, when this stress is aligned over a large enough region, the cracks will also be aligned and possess effective seismic anisotropy. It is suggested that such subcritical crack growth produces extensive-dilatancy anisotropy (EDA) throughout earth-quake preparation zones. This process is a possible driving mechanism for earthquake precursors observed at substantial distances from impending focal zones, and provides, in the shear-wave splitting which has been observed in several seismic regions, a possible technique for monitoring the build-up of stress before earthquakes.  相似文献   

20.
We have collected and re-examined macroseismic information for large Central American earthquakes since the beginning of the period of instrumental recording about one hundred years ago, and combined this with a reassessment of early instrumental information to produce a catalogue of 51 events that, we believe includes ail those with magnitudes ( Ms ) greater than 7.0. We have reassessed surface-wave magnitudes by consulting station bulletins and we have derived a correction that gives an equivalent Ms for events of intermediate depth. We have also developed a regional relationship between Ms and seismic moment, which enables us to estimate the seismic slip rate across the Middle American Trench. Our best estimates give an average slip rate several times smaller than suggested convergence rates, but with the seismic slip in the central segment of the trench almost an order of magnitude smaller than that in the segments on either side. The low seismic slip rate may indicate aseismic crustal deformation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号