首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Water inflow and water pressure controls are needed in the design, construction, and exploitation of tunnels. The objective of this paper is to present a new system which can be appropriate for rating tunnel sites to evaluate the potential of groundwater inflow according to the preliminary site investigation data. In this paper, an evaluation model based on combining the analytic hierarchy process and the fuzzy Delphi method has been presented for assessing tunnel site rating from the groundwater hazard point of view. This research treats the tunnel site classification as a group decision problem and applies the fuzzy logic theory as the criterion to calculate the weighting factors. Afterward, the proposed method was successfully applied to determine the amount of groundwater inflow into tunnels. Results of several case studies in various geological conditions roughly show that it can be used to determine the groundwater inflow into tunnels. The introduced method has been examined successfully in Ghomroud tunnel. Results from the proposed method, analytical equations, and observed groundwater inflow into Ghomrud tunnel have been compared. Results show that, because most of parameters regulating groundwater inflow into tunnels have been considered in the method, results from the method are very close to the observed groundwater inflow. Applying this method, according to preliminary investigations conducted by the designers, provides a more suitable design of the drainage system, drilling method, and tunnel support.  相似文献   

2.
盾构在有地下水和无地下水地区开挖有很大的不同,特别是在高水位下施工时,因为渗透力的影响可能会引起工作面的不稳定,而在实际工程中,这种影响很少被考虑,从而低估了盾构施工的风险。本文根据渗流场和温度场的相似性,将ANSYS软件的温度场分析功能应用于渗流场的分析,并利用ANSYS软件自带的APDL参数化语言开发渗流力计算模块,渗透力首先在流场进行计算,然后将其作为应力边界条件施加于各节点进行应力和变形分析,探讨渗流力的存在对盾构隧道开挖面稳定的影响。基于此,作者提出一种考虑渗流的新的开挖面稳定性分析方法,使盾构水下掘进的设计施工更加合理。  相似文献   

3.
张丙强  王启云  卢晓颖 《岩土力学》2018,39(12):4377-4384
软土在低水力坡降下的渗流会偏离达西定律,即为非达西渗流模式。假设孔隙水渗透服从指数渗流模式,采用镜像法原理推导了浅埋单孔和双孔圆形隧道非达西渗流场的解析解。结合算例,对浅埋圆形隧道非达西渗流解析解与达西渗流解析解进行了对比分析与验证,并对非达西渗流指数、隧道周围土体与衬砌渗流系数比值对隧道渗流场的影响进行了讨论。结果表明:非达西渗流指数、渗流系数比值对隧道渗流量和周围土体孔压均有较大的影响;随着渗流指数逐渐增大,土体内水头损失加快,隧道周围土体孔压及渗流量逐渐减小;随着土体与衬砌渗流系数比值逐渐增大,衬砌排水能力增强,隧道渗流量逐渐增大,隧道周围土体孔压减小更大。  相似文献   

4.
根据水位条件、施工工艺和防排水设计原则将隧道渗流计算围岩透水边界条件大致划分为4种类型,并分析了不同透水边界条件适应的施工工况。基于复变函数理论和保角映射方法,推导得出4种透水边界条件下隧道围岩内任一点孔隙水压力和隧道涌水量解析计算公式,通过与数值解的对比,印证了解析解的准确性。在此基础上,根据不同透水边界条件下隧道涌水量和围岩关键点孔隙水压力随埋深直径比( )的变化规律,分析了透水边界条件的变化对浅埋隧道和深埋隧道的影响,并探讨了浅埋水下隧道渗流计算中透水边界条件的选取。相关结论与认识对于隧道渗流计算和排水设计具有一定的指导作用和参考价值。  相似文献   

5.
Nowadays, due to urbanization and population increase, need for metro tunnels, has been considerably increased in urban areas. Common characterization of urban area tunnels is that they are excavated in very shallow depths and soft ground. In such excavations, main challenge for tunneling is low bearing capacity and easy deformation characteristic of the ground. Tunnel face instability and the potential surface settlement are the most hazardous factors that should be considered in all tunneling methods applied in urban areas. Incorrect estimation of the maximum surface settlement value can lead to irreparable damages to the buildings and other nearby structures. There are several published relationships concerned with field measurements and analytical solutions to estimate the amount of the maximum surface settlement value due to tunneling. These relationships are not precise for calculating the aimed values. Therefore, providing accurate equations for estimation of these values is certainly useful. First purpose of this study is to determine the effective parameters such as geotechnical factors (cohesion, internal friction angle, density, Young’s modulus and Poisson’s ratio), and engineering factors (tunnel depth, tunnel diameter and face support pressure) on the maximum surface settlement value. In this study, three metro project constructions namely Istanbul, Tehran, Mashhad in the Middle East were chosen. FLAC3D (Itasca Consulting Group 2002) was used for detailed numerical analysis. The second aim is to present better equations in estimating the maximum surface settlement-based actual data set from several tunnel projects and numerical modeling. The results from the new estimation equation are compared with results of empirical and field observations. The maximum surface settlement values obtained from the new equation have good agreement with the actual results for three different metro case studies.  相似文献   

6.
半无限含水层中带衬砌隧洞渗流解析研究   总被引:3,自引:0,他引:3  
童磊  谢康和  卢萌盟  王坤 《岩土力学》2011,32(1):304-308
现有关于半无限含水层中隧洞渗流的解析解不能考虑衬砌部分排水的特性。假定土体和衬砌均为饱和均匀连续介质,采用土体与衬砌分算;利用复变函数解决孔口问题基本方法,对土体采用共形映射坐标变换,将土体中的渗流方程转换为与衬砌部分类似的二维Laplace方程圆环域的Dirichlet问题;通过Fourier解法,根据边界条件并利用流量连续条件,求得半无限空间中带衬砌隧洞渗流量和衬砌周边水头解析解答。分析了径深比、土体与衬砌渗透系数相对值、内壁水压力等因素对渗流量和衬砌周边水头的影响,并与数值算例进行了比较。结果表明,对浅埋隧洞该解析解仍具有较好的精度,是简便、实用的计算方法。  相似文献   

7.
西南地区隧道工程条件下岩溶地下水系统变化特征分析   总被引:2,自引:0,他引:2  
张婉婷  漆继红  许模 《现代地质》2015,29(2):421-427
岩溶山区越岭长大隧道的施工不可避免地会使当地的岩溶水系统发生改变,如地下水水位的下降、地表泉点的漏失等。基于隧道工程对岩溶地下水系统边界条件、排泄状况等天然特征的影响,依据西南地区岩溶地下水系统主要特征及隧道工程特点,考虑隧道工程条件下影响岩溶地下水系统特征的主要因素,对岩溶类型(岩溶含水岩组的埋藏条件)、构造特征、补给特征、岩溶水径流方式与隧道工程特点相组合的模式下的岩溶地下水系统的变化进行特征分析,并将岩溶地下水系统的变化归纳为3种类型。据此,选择研究区金汁河地下水系统作为典型研究对象,假设3种隧道穿越方案,将不同隧道穿越方案下的岩溶地下水系统与天然岩溶地下水系统进行对比分析,归纳概述其变化特征,最后对各隧道方案下的涌水量及其涌水危险性进行初步预测及评价。  相似文献   

8.
考虑流-固耦合的隧道开挖数值模拟   总被引:3,自引:0,他引:3  
纪佑军  刘建军  程林松 《岩土力学》2011,32(4):1229-1233
根据隧道工程施工实际情况和地下水渗流的基本规律,以及弹塑性力学理论,建立了在应力场和渗流场耦合作用下隧道开挖数学模型,借助Comsol模拟了隧道开挖过程中围岩应力场及渗流场的变化规律。研究结果表明:在原岩开挖时,隧道围岩变形及地面沉降大,不利于周围建筑的安全,隧道内积水,施工无法进行;进行灌浆处理后,围岩变形小,地面沉降得到控制,有利于施工及周围建筑的安全。  相似文献   

9.
The longitudinal seismic response of a long tunnel subjected to Rayleigh waves is investigated in this paper. The tunnel is assumed to be infinitely long, has a uniform cross section, and rests on a viscoelastic foundation. The free-field deformation under Rayleigh waves traveling parallel to the tunnel axis is decomposed into two directions, namely, the axial motion and the vertical motion, and transformed into dynamic loads imposed on the tunnel. Based on the Fourier and Laplace integral transform techniques, the governing equations of tunnels are simplified into algebraic equations, and the analytical solutions are obtained with the convolution theorem. The final solutions of the tunnel responses in terms of deflection, velocity, acceleration, axial force, bending moment, and shear force are investigated. The proposed solution is verified by comparison of its results and those from the finite element program ABAQUS. Further parametric analysis is carried out to investigate the influence of soil-structure relative stiffness ratio and wave frequency on dynamic longitudinal responses of the tunnel.  相似文献   

10.
The presence of a gassy ground condition is an important problem in tunneling. In this study, the effects of groundwater H2S and CH4 emissions are investigated and characterized together with the factors that created these conditions in Nosoud tunnel in Iran. Through the geological investigations, the presence of these gasses was not detected prior to the construction of the tunnel. Groundwater sampling indicated that about 1 L of H2S is released per 100 L of the water inflow into the Nosoud tunnel under normal conditions. However, the volume of the released gas was varying with the changes in the groundwater discharge rate. Thus, estimation of groundwater inflow into the tunnel is necessary for predicting the volume of gas emission. Based on the experience of the Nosoud tunnel excavations, there are several geological and hydrogeological factors that must be considered as the indicators of gas emissions during tunneling. Considering the importance of ground water gas emission into the tunnels located in gassy conditions, the present work was conducted to predict the H2S seepage before the excavation using geological and hydrogeological indicators.  相似文献   

11.
本文采用逻辑信息法对某干旱区花岗岩体中的地下坑道渗水进行了研究.对影响地下坑道渗水的因素进行了分析,确定了可能与地下坑道渗水相关的11个影响因子,并根据场地地下坑道渗水特征,将渗水严重程度分成4个级别,建立了所研究场地地下坑道渗水预测评价的逻辑信息法模型,得到了不同影响因子的权重.从计算得到的影响因子的权重可以看出,围...  相似文献   

12.

Tunneling is often unpopular with local residents and environmentalists, and can cause aquifer damage. Tunnel sealing is sometimes used to avoid groundwater leakage into the tunnel, thereby mitigating the damage. Due to the high cost of sealing operations, a detailed hydrogeological investigation should be conducted as part of the tunneling project to determine the impact of sealing, and groundwater modeling is an accurate method that can aid decision-making. Groundwater-level drawdown induced by the construction of the Headrace water-conveyance tunnel in Sri Lanka dried up 456 wells. Due to resulting socio-environmental problems, tunnel sealing was decided as a remedy solution. However, due to the expectation of significant delays and high costs of sealing, and because the water pressure in the tunnel may prevent groundwater seepage into the tunnel during operation, there was another (counter) decision that the tunnel could remain unsealed. This paper describes groundwater modeling carried out using MODFLOW to determine which option—sealed or unsealed tunnel—is more effective in groundwater level recovery. The Horizontal Flow Barrier and River packages of MODFLOW were used to simulate sealed and unsealed tunnels, respectively. The simulation results showed that only through tunnel sealing can the groundwater level be raised to preexisting levels after 18 years throughout the study area. If the tunnel remains unsealed, about 1 million m3/year of water conveyed by the tunnel will seep into the aquifer, reducing the operational capacity of the tunnel as a transport scheme. In conclusion, partial tunnel sealing in high-impact sections is recommended.

  相似文献   

13.
针对有压盾构隧道中接缝水力劣化所引发的内外水力交互渗流问题,基于水力开度理论,通过数值和解析方法研究局部渗流下隧道衬砌与周围地层的渗流特性和力学响应。结果表明:基于镜像法推导的衬砌隧洞多点渗漏下渗流场解析解与数值解吻合良好,验证了给出的局部渗漏数值模型的有效性;局部外水内渗与内水外渗诱发的衬砌与地层共同作用存在较大差异,前者导致局部孔隙水压力降低引起土体挤压衬砌,衬砌轴力减小而弯矩增大从而产生衬砌外凸,后者则相反;多点局部渗漏对渗流场和衬砌响应的影响存在耦合作用,当内水压接近地层水头时可能出现外水内渗与内水外渗并存的特殊水力交互情况;地层渗透系数对局部渗漏行为的影响较大,复合地层下当局部渗漏发生于高渗透性地层时,其诱发的衬砌响应不显著,当渗漏处于下部低渗透性地层时,在地层交界面存在渗流折射现象,上部高渗透性地层起到补(排)水作用。  相似文献   

14.
长沙田汉大剧院地下空间商业项目一期基坑工程位于地铁1号线某区段正上方,坑底距隧道顶的最小距离约为6.2m。基坑坑底位于圆砾层中,地下水较丰富,考虑到降水对周边环境的影响,基坑工程采用封闭式止水帷幕并设置抗浮锚索。基坑开挖、降水引起的土体卸荷、地下水渗流,以及施工的抗浮锚索,共同影响坑底土体回弹,从而对下卧地铁隧道产生影响,如何分析与计算其影响成为该项工程的重点和难点。为此先通过两种常用的回弹变形估算方法计算坑底回弹量和隧道隆起位移;然后利用MIDAS GTS有限元软件建立三维数值分析模型,分别进行3种工况的模拟,包括不考虑地下水渗流影响并不采用抗浮锚索工况,考虑应力渗流耦合但不采用抗浮锚索工况,考虑应力渗流耦合并采用抗浮锚索工况。对比分析表明:帷幕渗透率较低时,考虑应力渗流耦合与不考虑渗流影响的坑底回弹和隧道隆起位移模拟结果基本一致;规范推荐估算方法在合理修正其卸荷应力,并确定合理的卸荷影响深度后,其计算结果与数值模拟结果相近。所得成果可为优化设计和施工提供有益的参考,并为类似工程提供借鉴。  相似文献   

15.
The construction of the Aica-Mules tunnel, completed in 2010, provides a relevant case history for improving the knowledge of hydrogeological issues related to the excavation of deep tunnels in granitic massifs. The Aica-Mules tunnel is a 10 km-long structure, forming part of the high-speed railway connection between Austria and Italy across the Alpine chain, located at an average depth of 500–1,000 m below the surface. Prior to and during the construction, intense hydrogeological monitoring was set up, allowing the collection of abundant data concerning: (1) the evolution of water inflows into the tunnel; (2) the chemistry and temperature of drained groundwater; and (3) the influence of tunnel drainage on springs. Based on detailed analysis of geological/hydrogeological data, this article provides an insight into the permeability distribution in granitic rocks affected by relevant brittle tectonic deformation, and the consequences of water inflow during excavation. The available time series from the principal water discharges in the tunnel have been used in order to test the reliability of some of the most commonly applied analytical methods for the forecast of water inflows into tunnels.  相似文献   

16.
An accurate estimate of the groundwater inflow to a tunnel is one of the most challenging but essential tasks in tunnel design and construction. Most of the numerical or analytical solutions that have been developed ignore tunnel seepage conditions, material properties and hydraulic-head changes along the tunnel route during the excavation process, leading to inaccurate prediction of inflow rates. A method is introduced that uses MODFLOW code of GMS software to predict inflow rate as the tunnel boring machine (TBM) gradually advances. In this method, the tunnel boundary condition is conceptualized and defined using Drain package, which is simulated by dividing the drilling process into a series of successive intervals based on the tunnel excavation rates. In addition, the drain elevations are specified as the respective tunnel elevations, and the conductance parameters are assigned to intervals, depending on the TBM type and the tunnel seepage condition. The Qomroud water conveyance tunnel, located in Lorestan province of Iran, is 36 km in length. Since the Qomroud tunnel involved groundwater inrush during excavating, it is considered as a good case study to evaluate the presented method. The groundwater inflow to this tunnel during the TBM advance is simulated using the proposed method and the predicted rates are compared with observed rates. The results show that the presented method can satisfactorily predict the inflow rates as the TBM advances.  相似文献   

17.
针对甘肃省及临近地区干旱、半干旱黄土地区工程地质、水文地质特点,实地调查该地区已建隧道渗漏水情况,分析该地区隧道渗漏水成因。以天巉二级汽车专用公路9座隧道为依托,应用工程类比法提出适合该地区的涌水类型划分方法,涌水类型划分为滴渗、淋淌、股水和突水4种,并分析了影响隧道防排水结构设计的因素和防排水设计原则。在此基础上,提出了防排水设计的4种合理结构型式及其适用条件。研究结果为天巉公路、巉柳公路防排水设计与施工提供了有效指导。  相似文献   

18.
涌水灾害问题广泛存在于隧洞工程的建设之中,它直接关系到施工进度、洞室稳定性及人身安全。目前国内外学者研究出大量的隧洞涌水量预测计算方法,但不同计算方法具有不同的适用条件和优缺点,选取合理的计算方法对于计算结果的准确性至关重要。本文将当前广泛应用的隧洞涌水量预测计算方法分类总结为4种:经验公式法、解析公式法、数值计算法和物理模拟法。经验公式法多来源于大量工程案例的总结,着重于相似地质条件下隧洞涌水量计算;解析公式法则基于严密的理论推导过程,计算过程快速简洁;数值计算法适用于复杂水文地质条件下涌水问题的计算;物理模拟法借助于试验的手段,直观地显现出隧洞的涌水规律。本文对现有计算方法的理论原理、适用条件和优缺点进行了详细的总结,并展望了隧洞涌水问题的未来研究方向。  相似文献   

19.
吉小明  王宇会  阳志元 《岩土力学》2007,28(Z1):379-384
隧道工程中的地下水问题是富水地层中普遍存在的重要问题,地下水流动对隧道围岩稳定性有重要影响。给出了描述隧道开挖过程中力学与水力特征及表征方法,根据岩体的基本结构特征及代表性单元体(REV)是否存在提出了流固耦合模型的建立方法;提出了隧道水力耦合数值分析中的耦合计算模型的建立方法;利用数值法研究了隧道开挖渗流与应力耦合问题,得到变形和渗流场的变化规律。结果表明,隧道开挖引起的渗流影响边界大于力学影响边界,由于渗流引起的渗流力增加了围岩的应力、位移,从围岩-支护结构共同作用原理考虑,进行隧道支护结构设计时是应该考虑渗流效应的。  相似文献   

20.
In this study, a simplified analytical closed‐form solution, considering plane strain and axial symmetry conditions, for analysis of a circular pressure tunnel excavated underwater table, is developed. The method accounts for the seepage forces with the steady‐state flow and is based on the generalized effective stress law. To examine the effect of pore pressure variations and also the boundary conditions at the ground surface, the formulations are derived for different directions around the tunnel. The proposed method can be applied for analysis and design of pressure tunnels. Illustrative examples are given to demonstrate the performance of the proposed solution and also to examine the effect of seepage forces on the stability of tunnels. The simplified analytical solution derived in this study is compared with numerical analyses. It is concluded that the classic solutions (Lame's thick‐walled solution), considering the internal pressure as a mechanical load applied to the tunnel surface, are not applicable to pervious media and can result in an unsafe design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号