首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
Since 1972, Weir-Jones Engineering Consultants (WJEC) has been involved in the development and installation of microseismic monitoring systems for the mining, heavy construction and oil/gas industries. To be of practical value in an industrial environment, microseismic monitoring systems must produce information which is both reliable and timely. The most critical parameters obtained from a microseismic monitoring system are the real-time location and magnitude of the seismic events. Location and magnitude are derived using source location algorithms that typically utilize forward modeling and iterative optimal estimation techniques to determine the location of the global minimum of a predefined cost function in a three-dimensional solution space. Generally, this cost function is defined as the RMS difference between measured seismic time series information and synthetic measurements generated by assuming a velocity structure for the area under investigation (forward modeling). The seismic data typically used in the source location algorithm includes P- and S-wave arrival times, and raypath angles of incidence obtained from P-wave hodogram analysis and P-wave first break identification. In order to obtain accurate and timely source location estimates it is of paramount importance that the extraction of accurate P-wave and S-wave information from the recorded time series be automated—in this way consistent data can be made available with minimal delay. WJEC has invested considerable resources in the development of real-time digital filters to optimize extraction, and this paper outlines some of the enhancements made to existing Kalman Filter designs to facilitate the automation of P-wave first break identification.  相似文献   

2.
The source parameters, moment, stress drop and source dimension are estimated for 61 events from the January 1975 Brawley earthquake swarm. Earthquakes studied range in local magnitude from 1.0 to 4.7. Stress drops range from 1 to 636 bars and increase with source depth. It is estimated that the sedimentary structure of the Imperial Valley amplifies shear waves by a factor of 2 to 3 in addition to the free surface amplification of 2. Estimates of moment from 10 sec surface waves are 4 to 6 times larger than the moment estimated from the relatively flat part of the local body wave spectrum at 1 sec. This may be due to after-slip on the fault, a long thin fault, or partial stress drop. It is shown that the experimentally determined ratio of stress drop to apparent stress should be approximately 4.0 when spectrum integration is used to obtainS-wave energy and theP-wave energy is 1/3 theS-wave energy.  相似文献   

3.
Digital seismograms continuously recorded from 1988 to 1992 by two stations of the RESNOM seismic network in northern Baja California, Mexico, were used to search for probable shear-wave anisotropic characteristics in the region of the Cerro Prieto fault. Shear-wave splitting was identified in many of the three-component records analyzed. We measured the polarization direction of the leadingS wave inside theS-wave window as well as the delay times between fast and slow phases on those records displaying shear-wave splitting. For station CPX, which is nearest the Imperial Valley region to the north, the preferred polarization direction found in this study (azimuth 180°±10°) coincides with the direction of the regional maximum compressive stress determined for the region. This polarization direction can be interpreted in terms of the “Extensive Dilatancy Anisotropy” model as the effect of vertical parallel aligned cracks. The preferred polarization direction measured at LMX, however, gives an azimuth of 45°±5°. Thus, it appears that faults and fractures aligned oblique to the main tectonic trend have a greater influence on the anisotropic characteristics of the crust south of Cerro Prieto volcano than that of the regional stress field. Time delays between slow and fastS waves observed at CPX appear constant from 1988 to 1992 while delays measured at LMX for the same interval indicate a small increase with time which cannot be attributed to azimuthal variations of paths.  相似文献   

4.
We show that the multiple scattering by small fractures of seismic waves with wavelengths long compared to the fracture size and fracture spacing is indistinguishable from multiple-scattering effects produced by regular porosity, except for an orientation factor due to fracture alignment. The fractures reduce theP-wave andS-wave velocities and produce an effective attenuation of the coherent component of the seismic waves. The attenuation corresponds to 1000/Q of about unity for a Gaussian spectrum of fractures, and it varies with frequencyf asf 3. For a Kolmogorov spectrum of fractures of spectral index the attenuation is an order of magnitude or so larger and varies with frequency asf 3-v The precise degree of attenuation depends upon the matrix properties, the fracture porosity, the degree of fracture anisotropy, the type of fluid filling the fractures, and the incidence angle of the wave.For fracture porosities less than about 15% theP-wave andS-wave velocities are decreased by the order of 5–10% with a lesser dependence on the type of fluid filling the fractures (gas, oil, or brine) and with a dependence on both the degree of anisotropy and the incident angle made by the wave. The tendency of fractures to occur perpendicularly to bedding suggests that the best way to measure seismically fractured rock behavior in situ is by using the travel-time delay and reflection amplitude. As both the offset and the azimuth of receivers vary from a shot, the travel-time delay and reflection amplitude should both show an elliptical pattern of behavior—the travel-time delay in response to the varying seismic speed, and the reflection amplitude in response to angular variations in the multiple scattering. Observations of attenuation at several frequencies should permit (a) determination of the spectrum of fractures (Gaussian versus Kolmogorovian) and (b) determination of the contribution of viscous damping to the effective attenuation.  相似文献   

5.
A single scattering model was used to analyse the temporary changes in the mean density of scattered waves in a discrete random medium. The model of the mean energy density, originally proposed bySato (1977) for spherical radiation and isotropic scattering, has been modified and applied to a medium in which the scatterers are confined to a specified volume. The time variation of the early part of the mean energy density function for the different source durations was investigated. The dominant effect on the theoretical mean energy density is caused by the specified volume containing scatterers. The duration of the source pulse influences the early part of the coda fort/t 0<1.2, wheret is the lapse time measured from the source origin time, andt 0is arrival time of the body wave.The analysis of the coda signal of micro-events occurring immediately in front of the face enables us to estimate the size of the fracture zone induced by the stope. The model of the mean energy density of coda for a medium containing scatterers close to the seismic source was used to analyse a large number of events recorded close to an advancing mine face in a deep level gold mine in South Africa. The coda decay rate has two trends: the first, with a steep decay of coda, is produced by a larger deviation of rock parameters and/or larger size of the scatterers; the second trend, which decays more slowly, has the corresponding mean-free path ranging from 20 m to 200 m. The analysis indicates that the rock mass about 15–20 m from the stope contains a large proportion of fractured and blocked rock, which is the source of scattering. The scattering of theS-wave was much stronger and more stable, with the mean-free path varying from 11 m to 45 m. This is due to the shorter wavelength of theS wave in comparison with theP wave. The quality factor for theP coda wave varies from 30 to 100 in the fracture zone of stope and outside this zone it has a value of 300. The quality factor of theS wave varies from 20 to 78 in the equivalent volume. For rock surrounding the stope the ratioQ sp –1 /Q ss –1 varied from 0.31 to 0.69. This suggests that the radii of scatterers are smaller than 3.5 m.  相似文献   

6.
The initial motion of primary body waves and polarization directions of secondary body waves have been applied successfully to the study of the mechanism operating at the earthquake focus. Equal area plots of these body wave characteristics resulted in radiation patterns that were compared to patterns due to theoretical focal mechanism sources. Such an approach indicated that a double couple force is the source mechanism operating at earthquake foci. This can be physically represented by faulting at the focus. This seems likely because of the relation between earthquakes and fault motion in shallow earthquakes. The possibility of other mechanisms operating in deep focus earthquakes has not been ruled out.The technique of solving for fault plane orientation/motion in equal area plots ofP-wave first motion andS-wave polarization, has been a powerful tool in areas where fault motions cannot be directly observed in studying tectonics. Such an approach has been used to test the theory of global tectonics. This approach has resulted in the confirmation of the suggested mechanics of plate motion, and the results of plate motion, such as spreading of the sea floor from mid-oceanic ridges and underthrusting of lithospheric plates at the sites of oceanic trenches.  相似文献   

7.
—Imperial Oil Resources Limited uses cyclic steam stimulation to recover oil from their Cold Lake oil field in Alberta. This operation, in particular situations, can be associated with the failure of well casings in the Colorado shales above the oil-bearing formation. A number of fluid injection operations was undertaken at this site and the associated microseismicity was detected using two three-component geophones and fifteen hydrophones. The purpose of this experiment was to simulate the occurrence of a casing failure, determine the feasibility of monitoring in a shallow environment, and characterize the microseismic activity. A calibration survey provided values of 1786 ± 108 m/s for P-wave velocity, 643 ± 56 m/s for S-wave velocity and 0.428 ± 0.017 for Poisson’s ratio in the shale formation. Estimates of the quality factor Q P were 15 for the horizontal direction and 38 for the vertical direction, corroborating the evidence of velocity anisotropy. Calibration shots were located to within 10 m of the actual shot points using triangulation and polarization techniques. Several hundred microseis mic events were recorded and 135 events were located. The results showed that microseismic activity was confined to depths within 10 meters of the injection depth. The experiment clearly established the feasibility of detecting microseismicity induced by fluid injection rates typical of casing failures in shales at distances over 100 m.  相似文献   

8.
A layeredP- andS-wave velocity model is obtained for the Friuli seismic area using the arrival time data ofP- andS-waves from local earthquakes. A damped least-squares method is applied in the inversion.The data used are 994P-wave arrival times for 177 events which have epicenters in the region covered by the Friuli seismic network operated by Osservatorio Geofisico sperimentale (OGS) di Trieste, which are jointly inverted for the earthquake hypocenters andP-wave velocity model. TheS-wave velocity model is estimated on the basis of 978S-wave arrival times and the hypocenters obtained from theP-wave arrival time inversion. We also applied an approach thatP- andS-wave arrival time data are jointly used in the inversion (Roecker, 1982). The results show thatS-wave velocity structures obtained from the two methods are quite consistent, butP-wave velocity structures have obvious differences. This is apparent becauseP-waves are more sensitive to the hypocentral location thanS-waves, and the reading errors ofS-wave arrival times, which are much larger than those ofP-waves, bring large location errors in the joint inversion ofP- andS-wave arrival time. The synthetic data tests indicated that when the reading errors ofS-wave arrivals are larger than four times that ofP-wave arrivals, the method proposed in this paper seems more valid thanP- andS-wave data joint inversion. Most of the relocated events occurred in the depth range between 7 and 11 km, just above the biggest jump in velocity. This jump might be related to the detachment line hypothesized byCarulli et al. (1982). From the invertedP- andS-wave velocities, we obtain an average value 1.82 forV p /V s in the first 16 km depth.  相似文献   

9.
Summary The crustal structure beneath the Himalayas has been investigated using body wave data from near earthquakes having epicentres over the Himalayas and recorded by the observatories situated over, or very near, the foothills of the mountains. A three-layered crustal model, without the top sedimentary layer, with velocities for theP wave group in Granite I, Granite II and the Basaltic layer as 5.48, 6.00 and 6.45 and for theS wave group as 3.33, 3.56 and 3.90 km/sec respectively, has been interpreted. The upper mantle velocity for theP wave has been observed to be 8.07 km/sec and for theS wave as 4.57 km/sec. Average thickness for the Granite I layer has been computed as 22.7 km, for the Granite II layer as 16.3 km and for the Basaltic layer as 18.7 km. Crustal and sub-crustal velocities indicate a lower trend under the mountain. A thicker crust has been obtained beneath the Himalayas.  相似文献   

10.
Scaling relations for seismic events induced by mining   总被引:1,自引:0,他引:1  
The values of seismic moment andS-wave corner frequency from 1575 seismic events induced in South African, Canadian, Polish, and German underground mines were collected to study their scaling relations. The values ofP-wave corner frequency from 649 events were also available. Seismic moments of these events range from 5*103 to 2*1015 N·m (moment magnitude is from –3.6 to 4.1), theS-wave corner frequency ranges from 0.7 to 4438 Hz, and theP-wave corner frequency is between 5 and 4010 Hz. The slope of a regression line between the logarithm ofS- andP-wave corner frequencies is equal to one, and the corner frequencies ofP waves are higher than those ofS waves on the average by about 25 percent. In studies of large and moderate earthquakes it has been found that stress drop is approximately independent of the seismic moment, which means that seismic moment is inversely proportional to the third power of corner frequency. Such a behavior was confirmed for most of the data considered here. A breakdown in the similarity betwen large and small events seems to occur for the events with moment magnitude below –2.5. The average values of seismic moment referred to the same range of corner frequency, however, are vastly different in various mining areas.  相似文献   

11.
Automatic picking of P and S phases using a neural tree   总被引:2,自引:1,他引:2  
The large amount of digital data recorded by permanent and temporary seismic networks makes automatic analysis of seismograms and automatic wave onset time picking schemes of great importance for timely and accurate event locations. We propose a fast and efficient P- and S-wave onset time, automatic detection method based on neural networks. The neural networks adopted here are particular neural trees, called IUANT2, characterized by a high generalization capability. Comparison between neural network automatic onset picking and standard, manual methods, shows that the technique presented here is generally robust and that it is capable to correctly identify phase-types while providing estimates of their accuracies. In addition, the automatic post processing method applied here can remove the ambiguity deriving from the incorrect association of events occurring closely in time. We have tested the methodology against standard STA/LTA phase picks and found that this neural approach performs better especially for low signal-to-noise ratios. We adopt the recall, precision and accuracy estimators to appraise objectively the results and compare them with those obtained with other methodologies.Tests of the proposed method are presented for 342 earthquakes recorded by 23 different stations (about 5000 traces). Our results show that the distribution of the differences between manual and automatic picking has a standard deviation of 0.064 s and 0.11 s for the P and the S waves, respectively. Our results show also that the number of false alarms deriving from incorrect detection is small and, thus, that the method is inherently robust.This paper has not been submitted elsewhere in identical or similar form, nor will it be during the first three months after its submission to Journal of Seismology.  相似文献   

12.
Microseismic monitoring has proven invaluable for optimizing hydraulic fracturing stimulations and monitoring reservoir changes. The signal to noise ratio of the recorded microseismic data varies enormously from one dataset to another, and it can often be very low, especially for surface monitoring scenarios. Moreover, the data are often contaminated by correlated noises such as borehole waves in the downhole monitoring case. These issues pose a significant challenge for microseismic event detection. In addition, for downhole monitoring, the location of microseismic events relies on the accurate polarization analysis of the often weak P‐wave to determine the event azimuth. Therefore, enhancing the microseismic signal, especially the low signal to noise ratio P‐wave data, has become an important task. In this study, a statistical approach based on the binary hypothesis test is developed to detect the weak events embedded in high noise. The method constructs a vector space, known as the signal subspace, from previously detected events to represent similar, yet significantly variable microseismic signals from specific source regions. Empirical procedures are presented for building the signal subspace from clusters of events. The distribution of the detection statistics is analysed to determine the parameters of the subspace detector including the signal subspace dimension and detection threshold. The effect of correlated noise is corrected in the statistical analysis. The subspace design and detection approach is illustrated on a dual‐array hydrofracture monitoring dataset. The comparison between the subspace approach, array correlation method, and array short‐time average/long‐time average detector is performed on the data from the far monitoring well. It is shown that, at the same expected false alarm rate, the subspace detector gives fewer false alarms than the array short‐time average/long‐time average detector and more event detections than the array correlation detector. The additionally detected events from the subspace detector are further validated using the data from the nearby monitoring well. The comparison demonstrates the potential benefit of using the subspace approach to improve the microseismic viewing distance. Following event detection, a novel method based on subspace projection is proposed to enhance weak microseismic signals. Examples on field data are presented, indicating the effectiveness of this subspace‐projection‐based signal enhancement procedure.  相似文献   

13.
High-frequency (≥2 Hz) Rayleigh wave phase velocities can be inverted to shear (S)-wave velocities for a layered earth model up to 30 m below the ground surface in many settings. Given S-wave velocity (VS), compressional (P)-wave velocity (VP), and Rayleigh wave phase velocities, it is feasible to solve for P-wave quality factor QP and S-wave quality factor QS in a layered earth model by inverting Rayleigh wave attenuation coefficients. Model results demonstrate the plausibility of inverting QS from Rayleigh wave attenuation coefficients. Contributions to the Rayleigh wave attenuation coefficients from QP cannot be ignored when Vs/VP reaches 0.45, which is not uncommon in near-surface settings. It is possible to invert QP from Rayleigh wave attenuation coefficients in some geological setting, a concept that differs from the common perception that Rayleigh wave attenuation coefficients are always far less sensitive to QP than to QS. Sixty-channel surface wave data were acquired in an Arizona desert. For a 10-layer model with a thickness of over 20 m, the data were first inverted to obtain S-wave velocities by the multichannel analysis of surface waves (MASW) method and then quality factors were determined by inverting attenuation coefficients.  相似文献   

14.
Acoustic emissions (AE), compressional (P), shear (S) wave velocities, and volumetric strain of Etna basalt and Aue granite were measured simultaneously during triaxial compression tests. Deformation-induced AE activity and velocity changes were monitored using twelve P-wave sensors and eight orthogonally polarized S-wave piezoelectric sensors; volumetric strain was measured using two pairs of orthogonal strain gages glued directly to the rock surface. P-wave velocity in basalt is about 3 km/s at atmospheric pressure, but increases by > 50% when the hydrostatic pressure is increased to 120 MPa. In granite samples initial P-wave velocity is 5 km/s and increases with pressure by < 20%. The pressure-induced changes of elastic wave speed indicate dominantly compliant low-aspect ratio pores in both materials, in addition Etna basalt also contains high-aspect ratio voids. In triaxial loading, stress-induced anisotropy of P-wave velocities was significantly higher for basalt than for granite, with vertical velocity components being faster than horizontal velocities. However, with increasing axial load, horizontal velocities show a small increase for basalt but a significant decrease for granite. Using first motion polarity we determined AE source types generated during triaxial loading of the samples. With increasing differential stress AE activity in granite and basalt increased with a significant contribution of tensile events. Close to failure the relative contribution of tensile events and horizontal wave velocities decreased significantly. A concomitant increase of double-couple events indicating shear, suggests shear cracks linking previously formed tensile cracks.  相似文献   

15.
Velocity as well as attenuation factorQ –1 ofP-wave in a dry granitic rock sample under uniaxial compressions were measured in the range of frequency between 100 kHz and 710 kHz by using the pulse transmission technique. Above the stress of 0.5 f , where f is the fracture stress, theP-wave velocity decreases with increasing axial stress, whereasQ –1 increases. Particularly, the change ofQ –1 is greater for high frequency than for low frequency. At a given stress level, the higher the frequency, the higher theP-wave velocity and the largerQ –1. This result means that the velocity decrease with increasing stress is smaller for higher frequency. Because of this frequency-dependence of velocity decrease, theP-wave in the rock under dilatant state shows dispersion. The body wave dispersion is more remarkable at higher stress, and is not found in a homogeneous material with no cracks. Thus the disperison is attributed to the generation of cracks. When the frequency-dependence ofQ –1 is approximated asf n in the present frequency range, the exponentn takes a value from 0.63 to 0.77.  相似文献   

16.
Observed polarization ellipses for fundamental-mode surface waves observed at a digital station in Hawaii deviate from those expected for isotropic models of crust and mantle structure for that region. The anomalous motion occurs as rotations of the ellipse about all three axes in a cartesian corrdinate system. The largest and most consistent deviations occur as anomalous slopes of the ellipse about the horizontal axis transverse to the direction of propagation.The observed orientations and magnitudes of these angles can be explained by models of the upper mantle which contain olivine for which thea-axis dips significantly from the horizontal and which includes a sufficiently thick sedimentary layer (1 km) and a thicker than normal oceanic crust (15 km). The ellipses are also generally inclined from great circle paths about the vertical axis and are tilted about the axis aligned with the propagation direction. Both angles are small and difficult to measure, but the inclination angles are consistent with a model of the upper mantle in which thea-axis of olivine is preferentially oriented in an east-west direction.  相似文献   

17.
Acoustic full waveforms recorded in wells are the simplest way to get the velocity of P, S, and Stoneley waves in situ. Processing and interpretation of acoustic full waveforms in hard formations does not generate problems with identification packets of waves and calculation of their slowness and arrivals, and determination of the elastic parameter of rocks. But in shallow intervals of wells, in soft formations, some difficulties arise with proper evaluation of the S-wave velocity due to the lack of refracted S wave in case when its velocity is lower than the velocity of mud. Dynamic approach to selection of a proper value of semblance to determine the proper slowness and arrival is presented. Correlation between the results obtained from the proposed approach and the theoretical modeling is a measure of the correctness of the method.  相似文献   

18.
The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.  相似文献   

19.
—For small-scale microseismic events, the source sizes provided by shear models are unrealistically large when compared to visual observations of rock fractures near underground openings. A detailed analysis of the energy components in data from a mine-by experiment and from some mines showed that there is a depletion of S-wave energy for events close to the excavations, indicating that tensile cracking is the dominant mechanism in these microseismic events.¶In the present study, a method is proposed to estimate the fracture size from microseismic measurements. The method assumes tensile cracking as the dominant fracture mechanism for brittle rocks under compressive loads and relates the fracture size to the measured microseismic energy. With the proposed method, more meaningful physical fracture sizes can be obtained and this is demonstrated by an example on data from an underground excavation with detailed, high-quality microseismic records.  相似文献   

20.
Summary Underwater sound waves from earthquakes or so-calledT-waves are investigated for the Atlantic-Arctic area for the years 1953–1968, mainly from Swedish seismograph records, and for comparison also from an earthquake in the equatorial Atlantic withT-waves recorded on both sides of the ocean. The waves travel as sound waves through water, and asPg, Sg andRg over the land path. The North Atlantic source area of theT-waves, recorded at Scandinavian stations, is very well limited in extent with a strong concentration northeast of Jan Mayen, probably due to favourable bottom topography. The calculated sound velocities in water are 1.43 km/sec for the Arctic case and 1.52 km/sec for the equatorial one. TheT-waves exhibit a clear inverse dispersion. The dispersion explains their long duration. The duration of theT-phase increases logarithmically with the maximum amplitudes within theT-wave group and decreases linearly with distance over the land path, corresponding to a quality factor of about 700. Propagation across the ocean by multiple reflections between surface and bottom appears as the most probable mechanism. The particle motion ofT Sg is dominantly transverse horizontal, which is explained by refraction when the waves are transmitted to land. TheT-wave spectra at two different localities show clear relations, depending upon the ocean depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号