首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of this study is a suite of garnet-bearing mantlexenoliths from Oahu, Hawaii. Clinopyroxene, olivine, and garnetconstitute the bulk of the xenoliths, and orthopyroxene is presentin small amounts. Clinopyroxene has exsolved orthopyroxene,spinel, and garnet. Many xenoliths also contain spinel-coredgarnets. Olivine, clinopyroxene, and garnet are in major elementchemical equilibrium with each other; large, discrete orthopyroxenedoes not appear to be in major-element chemical equilibriumwith the other minerals. Multiple compositions of orthopyroxeneoccur in individual xenoliths. The new data do not support theexisting hypothesis that all the xenoliths formed at 1 6–22GPa, and that the spinel-cored garnets formed as a consequenceof almost isobaric subsolidus cooling of a spinel-bearing assemblage.The lack of olivine or pyroxenes in the spinel–garnetreaction zones and the embayed outline of spinel grains insidegarnet suggest that the spinel-cored garnets grew in the presenceof a melt. The origin of these xenoliths is interpreted on thebasis of liquidus phase relations in the tholeiitic and slightlysilica-poor portion of the CaO–MgO–Al2O3–SiO2(CMAS) system at pressures from 30 to 50 GPa. The phase relationssuggest crystallization from slightly silica-poor melts (ortransitional basaltic melts) in the depth range 110–150km beneath Oahu. This depth estimate puts the formation of thesexenoliths in the asthenosphere. On the basis of this study itis proposed that the pyroxenite xenoliths are high-pressurecumulates related to polybaric magma fractionation in the asthenosphere,thus making Oahu the only locality among the oceanic regionswhere such deep magmatic fractional crystallization processeshave been recognized. KEY WORDS: xenolith; asthenosphere; basalt; CMAS; cumulate; oceanic lithosphere; experimental petrology; mantle; geothermobarometry; magma chamber  相似文献   

2.
Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick in J Volcanol Geotherm Res 110(3–4):191–233, 2001) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.  相似文献   

3.
The Wrangellia terrane of North America contains a large volumeof Middle to Late Triassic oceanic flood basalts which wereemplaced on top of a preexisting island arc. Nd-, Sr-, and Pb-isotopiccompositions reflect derivation from a plume source with Nd(T)+6 to + 7, 87Sr/86Sri0•7034, and 206Pb/204Pbi19•0.Major and trace element compositions suggest the Wrangelliaflood basalts (WFB) formed through relatively small degreesof partial melting at greater depths than estimated for otheroceanic plateaux such as Ontong Java. It appears that the WFBdid not form in a rifting environment, and that preexistingarc lithosphere limited the ascent and decompression meltingof the source plume. Rocks from the preexisting arc are stronglydepleted in high field strength elements (HFSEs) relative tolarge ion lithophile elements (LILEs), but the WFB are not.Assimilation of arc lithospheric mantle or crust was thereforegenerally minor. However, some contamination by arc componentsis evident, particularly in basalts erupted in the early stagesof volcanism. Minor isotopic shifts, to lower Nd(T) and 206Pb/204Pbiand higher 87Sr/86Sri, are accompanied by shifts in trace elementratios towards more arclike signatures, e.g. low Nb/Th and Nb/La.Arc contamination is greatest in the most evolved basalts, indicatingthat assimilation was coupled with fractional crystallization.A comparison of the WFB with other continental and oceanic floodbasalts reveals that continental flood basalts generally formthrough smaller degrees of melting than oceanic flood basaltsand that the contribution of material from the crust and litho-sphericmantle is significantly greater. KEY WORDS: oceanic flood basalts; Wrangellia terrane; petrogenesis; Sr-Nd-Pb isotopes *Corroponding author  相似文献   

4.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

5.
Whole-rock geochemical data on basaltic to rhyolitic samplesfrom 12 volcanic centers are used to constrain the role of continentalcrust in the genesis of magmas formed beneath the anomalouslywide subduction-related volcanic arc in Ecuador. Relativelyhomogeneous, mantle-like, isotopic compositions across the arcimply that the parental magmas in Ecuador were produced largelywithin the mantle wedge above the subduction zone and not byextensive melting of crustal rocks similar to those upon whichthe volcanoes were built. Cross-arc changes in 143Nd/144Nd and7/4Pb are interpreted to result from assimilation of geochemicallymature continental crust, especially in the main arc area, 330–360km from the trench. Mixing calculations limit the quantity ofassimilated crust to less than 10%. Most andesites and dacitesin Ecuador have adakite-like trace element characteristics (e.g.Y <18 ppm, Yb <2 ppm, La/Yb >20, Sr/Y >40). Availablewhole-rock data do not provide a clear basis for distinguishingbetween slab-melting and deep crustal fractionation models forthe genesis of Ecuador adakites; published data highlightinggeochemical evolution within individual volcanoes, and in magmaticrocks produced throughout Ecuador since the Eocene, appear tosupport the deep fractionation model for the genesis of mostevolved Ecuadoran lavas. A subset of andesites, which displaya combination of high Sr (>900 ppm), Nd >4·1 and7/4Pb <6·0, appear to be the best candidates amongEcuador lavas for slab-melts associated with the subductionof the relatively young, over-thickened, oceanic crust of theCarnegie Ridge. KEY WORDS: andesite; Ecuador; trace elements; isotopes; adakite  相似文献   

6.
DUFEK  J.; BERGANTZ  G. W. 《Journal of Petrology》2005,46(11):2167-2195
We present a quantitative assessment of the thermal and dynamicresponse of an amphibolitic lower crust to the intrusion ofbasaltic dike swarms in an arc setting. We consider the effectof variable intrusion geometry, depth of intrusion, and basaltflux on the production, persistence, and interaction of basalticand crustal melt in a stochastic computational framework. Distinctmelting and mixing environments are predicted as a result ofthe crustal thickness and age of the arc system. Shallow crustal(30 km) environments and arc settings with low fluxes of mantle-derivedbasalt are likely repositories of isolated pods of mantle andcrustal melts in the lower crust, both converging on daciticto rhyodacitic composition. These may be preferentially rejuvenatedin subsequent intrusive episodes. Mature arc systems with thickercrust (50 km) produce higher crustal and residual basaltic meltfractions, reaching 0·4 for geologically reasonable basaltfluxes. The basaltic to basaltic andesite composition of bothcrustal and mantle melts will facilitate mixing as the networkof dikes collapses, and Reynolds numbers reach 10–4–1·0in the interiors of dikes that have been breached by ascendingcrustal melts. This may provide one mechanism for melting, assimilation,storage and homogenization (MASH)-like processes. Residual mineralassemblages of crust thickened by repeated intrusion are predictedto be garnet pyroxenitic, which are denser than mantle peridotiteand also generate convective instabilities where some of thecrustal material is lost to the mantle. This reconciles thethinner than predicted crust in regions that have undergonea large flux of mantle basalt for a prolonged period of time,and helps explain the enrichment of incompatible elements suchas K2O, typical of mature arc settings, without the associatedmass balance problem. KEY WORDS: crustal anatexis; delamination; lower crust; magma mixing; thermal model  相似文献   

7.
New 18O values for plagioclase, pyroxene and olivine, and limitedwhole-rock D values are presented for samples from the RustenburgLayered Suite of the Bushveld Complex, South Africa. In combinationwith existing data, these provide a much more complete compositeO-isotope stratigraphy for the intrusion. Throughout the layeredsuite, mineral 18O values indicate that the magmas from whichthey crystallized had 18O values that were about 7·1,that is, 1·4 higher than expected for mantle-derivedmagmas, suggesting extensive crustal contamination. More limitedH-isotope data suggest that the OH present within whole rocks,regardless of the degree of alteration, is of magmatic originand not an alteration phenomenon. There appears to be no systematicchange in 18O value with stratigraphic height and this requiresthe contamination to have taken place in a ‘staging chamber’before emplacement of the magma(s) into the present chamber.Large amounts (30–40%) of contamination by the lower tomiddle crust are needed to explain these 18O values, which isin general agreement with previous estimates based on Sr- andNd-isotope data. Alternatively, smaller amounts of contamination(20%) by sedimentary rocks, or their partial melts, representedby the country rock can explain the data, but it is not apparenthow such material could have been present at the depth of the‘staging chamber’ in the lower to middle crust. KEY WORDS: Bushveld Complex; Rustenburg Layered Suite; oxygen isotopes; hydrogen isotopes; crustal contamination  相似文献   

8.
This comment addresses the interpretation of oxygen fugacitydata for spinel peridotite xenoliths from five Mexican volcanicfields presented by Luhr & Aranda-Gomez (Journal of Petrology,38, 1075–1112, 1997). The postulated east–west increaseof the FMQ (‘relative oxygen fugacity’, where FMQis fayalite–magnetite–quartz) values is inherentto the method and therefore of questionable geological significance.Increases in FMQ do not necessarily mirror oxidation processesin the mantle controlled by subduction-related fluids. KEY WORDS: mantle metasomatism; Mexico; peridotite xenoliths; relative oxygen fugacity  相似文献   

9.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   

10.
This study reports oxygen isotope ratios determined by laserfluorination of mineral separates (mainly plagioclase) frombasaltic andesitic to rhyolitic composition volcanic rocks eruptedfrom the Lassen Volcanic Center (LVC), northern California.Plagioclase separates from nearly all rocks have 18O values(6·1–8·4) higher than expected for productionof the magmas by partial melting of little evolved basalticlavas erupted in the arc front and back-arc regions of the southernmostCascades during the late Cenozoic. Most LVC magmas must thereforecontain high 18O crustal material. In this regard, the 18O valuesof the volcanic rocks show strong spatial patterns, particularlyfor young rhyodacitic rocks that best represent unmodified partialmelts of the continental crust. Rhyodacitic magmas erupted fromvents located within 3·5 km of the inferred center ofthe LVC have consistently lower 18O values (average 6·3± 0·1) at given SiO2 contents relative to rockserupted from distal vents (>7·0 km; average 7·1± 0.1). Further, magmas erupted from vents situated attransitional distances have intermediate values and span a largerrange (average 6·8 ± 0·2). Basaltic andesiticto andesitic composition rocks show similar spatial variations,although as a group the 18O values of these rocks are more variableand extend to higher values than the rhyodacitic rocks. Thesefeatures are interpreted to reflect assimilation of heterogeneouslower continental crust by mafic magmas, followed by mixingor mingling with silicic magmas formed by partial melting ofinitially high 18O continental crust (9·0) increasinglyhybridized by lower 18O (6·0) mantle-derived basalticmagmas toward the center of the system. Mixing calculationsusing estimated endmember source 18O values imply that LVC magmascontain on a molar oxygen basis approximately 42 to 4% isotopicallyheavy continental crust, with proportions declining in a broadlyregular fashion toward the center of the LVC. Conversely, the18O values of the rhyodacitic rocks suggest that the continentalcrust in the melt generation zones beneath the LVC has beensubstantially modified by intrusion of mantle-derived basalticmagmas, with the degree of hybridization ranging on a molaroxygen basis from approximately 60% at distances up to 12 kmfrom the center of the system to 97% directly beneath the focusregion. These results demonstrate on a relatively small scalethe strong influence that intrusion of mantle-derived maficmagmas can have on modifying the composition of pre-existingcontinental crust in regions of melt production. Given thisresult, similar, but larger-scale, regional trends in magmacompositions may reflect an analogous but more extensive processwherein the continental crust becomes progressively hybridizedbeneath frontal arc localities as a result of protracted intrusionof subduction-related basaltic magmas. KEY WORDS: oxygen isotopes; phenocrysts; continental arc magmatism; Cascades; Lassen  相似文献   

11.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

12.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   

13.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

14.
Early Cretaceous tholeiitic picrite-to-rhyolite dykes aroundSpitzkoppe, western Namibia, are part of the extensive HentiesBay–Outjo swarm, penecontemporaneous with 132 Ma Etendekalavas 100 km to the NW. Although only intermediate to rhyoliticdykes contain clinopyroxene phenocrysts, the behaviour of Ca,Al and Sc in the dyke suite shows that liquidus clinopyroxene—togetherwith olivine—was a fractionating phase when MgO fell to9 wt %. Both a plot of CIPW normative di–hy–ol–ne–Qand modelling using (p)MELTS show that a mid-crustal pressureof 0·6 GPa is consistent with this early clinopyroxenesaturation. Sr, Nd, Hf and Pb isotope variations all show trendsconsistent with AFC contamination (assimilation linked to fractionalcrystallization), involving Pan-African Damara belt continentalcrust. The geochemical variation, including isenthalpic AFCmodelling using (p)MELTS, suggests that the picrites (olivine-richcumulate suspensions) were interacting with granulite-faciesmetamorphic lower crust, the intermediate compositions withamphibolite-facies middle crust, and the rhyolitic dykes (anda few of the basalts) with the Pan-African granites of the uppercrust. The calculated densities of the magmas fall systematicallyfrom picrite to rhyolite and suggest a magmatic system resemblinga stack of sills throughout the crust beneath Spitzkoppe, withthe storage and fractionation depth of each magma fraction controlledby its density. Elemental and isotopic features of the 20 wt% MgO picrites (including Os isotopes) suggest that their parentalmelts probably originated by fusion of mid-ocean ridge basalt(MORB) source convecting mantle, followed by limited reactionwith sub-continental lithospheric mantle metasomatized justprior to the formation of the parental magmas. Many of the distinctivefeatures of large-volume picritic–basaltic magmas maynot be derived from their ultimate mantle sources, but may insteadbe the results of complex polybaric fractional crystallizationand multi-component crustal contamination. KEY WORDS: flood basalts; Spitzkoppe; picrite; trace elements; hafnium isotopes; Etendeka  相似文献   

15.
Sediment mixing and recycling through a subduction zone canbe detected in lead isotopes and trace elements from basaltsand sediments from the Kermadec-Hikurangi Margin volcanic arcsystem and their coupled back-arc basins. Sr, Nd and Pb isotopesfrom the basalts delineate relatively simple, almost overlapping,arrays between back-arc basin basalts of the Havre Trough-NgatoroBasin (87Sr/86Sr = 0.70255; Nd=+9.3; 206Pb/204Pb = 18.52; 208Pb/204Pb= 38.18), island arc basalts from the Kermadec Arc togetherwith basalts from Taupo Volcanic Zone (87Sr/86Sr 0.7042; Nd= +5; 206Pb/204Pb= 18.81; 208Pb/204Pb = 38.61), and sedimentsderived from New Zealand's Mesozoic (Torlesse) basement (87Sr/86Sr 0.715; Nd —4; 206Pb/204Pb 18.86; 208Pb/204Pb 38.8).Basalts from the arc front volcanoes have high Cs, Rb, Ba, Th,U and K, and generally high but variable Ba/La, Ba/Nb ratios,characteristic of subduction-related magmas, relative to typicaloceanic basalts. These signatures are diluted in the back-arcbasins, which are more like mid-ocean ridge basalts. Strongchemical correlations in plots of SiO2 vs CaO and loss on ignitionfor the sediments (finegrained muds) are consistent with mixingbetween detrital and biogenic (carbonate-rich) components. Otherdata, such as Zr vs CaO, are consistent with the detrital componentcomprising a mixture of arc- and continent-derived fractions.In chondrite-normalized diagrams, most of the sediments havelight rare earth element enriched patterns, and all have negativeEu anomalies. The multielement diagrams have negative spikesat Nb, P and Ti and distinctive enrichments in the large ionlithophile elements and Pb relative to mantle. Isotopic measurementsof Pb, Sr and Nd reveal restricted fields of Pb isotopes butwide variation in Nd and Sr relative to other sediments fromthe Pacific Basin. Rare K-rich basalts from Clark Volcano towardthe southern end of the oceanic Kermadec Island Arc show unusualand primitive characteristics ( 2% K2O at 50% SiO2, Ba 600p.p.m., 9–10% MgO and Ni > 100 p.p.m.) but have highlyradiogenic Sr, Nd and Pb isotopes, similar to those of basaltsfrom the continental Taupo Volcanic Zone. These oceanic islandarc basalts cannot have inherited their isotope signatures throughcrustal contamination or assimilation—fractional crystallizationtype processes, and this leads us to conclude that source processesvia bulk sediment mixing, fluid and/or melt transfer or somecombination of these are responsible. Although our results showclear chemical gradients from oceanic island arc to continentalmargin arc settings (Kermadec Arc to Taupo Volcanic Zone), overlapbetween the data from the oceanic and continental sectors suggeststhat the lithospheric (crustal contamination) effect may beminimal relative to that of sediment subduction. Indeed, itis possible to account for the chemical changes by a decreasenorthward in the sediment flux into the zone of magma genesis.This model receives support from recent sediment dispersal studiesin the Southern Ocean which indicate that a strong bottom current(Deep Western Boundary Current) flows northward along the easterncontinental margin of New Zealand and sweeps continental derivedsediment into the sediment-starved oceanic trench system. Thetrace element and isotopic signatures of the continental derivedcomponent of this sediment are readily distinguished, but alsodiluted in a south to north direction along the plate boundary. KEY WORDS: subduction zone basalts; sediments; Sr-, Nd-, Pb-isotopes; trace elements *Present address: School of Earth Sciences, University of Melbourne, Parkville, Vic. 3052, Australia.  相似文献   

16.
The volcanoes of the South Sandwich island arc follow threedistinct series: low-K tholeiitic (followed by Zavodovski, Candlemas,Vindication, Montagu and Bristol), tholeiitic (followed by Visokoi,Saunders and Bellinghausen) and calcalkaline (followed by Leskov,Freehand and part of Cook and Thule). Flux calculations indicatethat the percentage contribution of the subduction componentto the mantle source of all three series varies from undetectable(e.g. Zr) through small (e.g. Nd=20%) and moderate (e.g. La,Ce, Sr=50–80%) to dominant (e.g. Pb, K, Ba, Rb, Cs >90%)with little change along the arc. Isotope systematics (Pb, Nd,Sr) show that this subduction component obtains a greater contributionfrom altered oceanic crust than from pelagic sediment. Elementsfor which the subduction contribution is small show that themantle is already depleted relative to N-MORB mantle (equivalentto loss of an 2•5% melt fraction) before melting beneaththe arc. After addition of the subduction component, dynamicmelting of this depleted mantle then causes the variations inK that distinguish the three series. The estimated degree ofpartial melting (20%) is slightly greater than that beneathocean ridges, though geothermometry suggests that the primarymagma temperature (1225C) is similar to that of primary MORB.About half of the melting may be attributed to volatile addition,and half to decompression. Dynamic melting involving three-dimensional,two-phase flow may be needed to explain fully the inter-islandvariations. KEY WORDS: geochemistry; petrology; fluxes; melting; subduction *Corresponding author  相似文献   

17.
We present trace element and Sr–Nd–Hf–Pb isotopecompositions for clinopyroxenes from anhydrous spinel peridotiteand garnet ± spinel pyroxenite xenoliths of Pan-Africanlithospheric mantle from Jordan, including the first high-precisiondouble-spike Pb isotope measurements of mantle clinopyroxene.Clinopyroxenes from the peridotites are variably Th–U–LILE–LREEenriched and display prominent negative Nb, Zr and Ti anomalies.MREE–HREE abundances can generally be modelled as partialmelting residues of spinel lherzolite with primitive-mantle-likecomposition after extraction of 5–10% melt, whereas theenrichments in Th–U–LILE–LREE require a Pan-Africanor later metasomatic event. The large range of Nd, Sr, Pb andHf isotope ratios in both peridotites and pyroxenites (e.g.Nd 1·4–17·5; 206Pb/204Pb 17·2–20·4;Hf 0·6–164·6) encompasses compositionsmore radiogenic than mid-ocean ridge basalt (MORB), and Pb isotopescover almost the entire range of oceanic basalt values. Hf valuesare some of the highest ever recorded in mantle samples andare decoupled from Nd in the same samples. Marked correlationsbetween Sr–Nd–Pb isotopes, LILE–LREE enrichmentsand HFSE depletion suggest that the metasomatizing agent wasa carbonatitic-rich melt and isotopic data suggest that metasomatismmay have been related to Pan-African subduction. The metasomaticmelt permeated depleted upper mantle (<16 kbar) during Pan-Africansubduction at 600–900 Ma, and the variably metasomatizedmaterial was then incorporated into the Arabian lithosphericmantle. There is no evidence for recent metasomatism (<30Ma) related to the Afar plume like that postulated to have affectedsouthern Arabian lithospheric mantle. Hf isotopes in the mantleclinopyroxenes are unaffected by metasomatism, and even somestrongly overprinted lithologies record ancient (>1·2Ga) pre-metasomatic Lu–Hf signatures of the depleted uppermantle that was the protolith of the Arabian lithospheric mantle.The ‘resistance’ of the Lu–Hf isotopic systemto later metasomatic events resulted in the development of extremelyheterogeneous Hf isotopic signatures over time that are decoupledfrom other isotopic systems. No mantle sample in this studyexactly matches the chemical and isotopic signature of the sourceof Jordanian intraplate basalts. However, the xenolith compositionsare broadly similar to those of the source of Arabian intraplatebasalts, suggesting that the numerous Cenozoic intraplate volcanicfields throughout Arabia may be the product of melting uppermantle wedge material fertilized during Pan-African subductionand incorporated into the Arabian lithospheric mantle. We proposea model whereby the proto-Arabian lithospheric mantle underwenta major melting event in early Proterozoic–late Archeantimes (at the earliest at 1·2 Ga). Island-arc volcanismand major crust formation occurred during the Pan-African orogeny,which liberated fluids and possibly small-degree melts thatmigrated through the mantle creating zones of enrichment forcertain elements depending upon their compatibility. Immobileelements, such as Nb, were concentrated near the base of themantle wedge providing the source of the Nb-rich Jordanian volcanicrocks. More mobile elements, such as LILE and LREE, were transportedup through the mantle and fertilized the shallow mantle sourceof the Jordanian xenoliths. Following subduction, the mantlewedge became fossilized and preserved distinct enriched anddepleted zones. Lithospheric rifting in the Miocene triggeredpartial melting of spinel-facies mantle in the lower lithosphere,which mixed with deeper asthenospheric garnet-facies melts asrifting evolved. These melts entrained segments of variablycarbonatite-metasomatized shallow lithospheric mantle en routeto the surface. KEY WORDS: Arabian lithospheric mantle; Jordan; mantle xenoliths; Sr–Nd–Hf–Pb isotopes  相似文献   

18.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

19.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

20.
The Skye igneous centre, forming part of the British Tertiarymagmatic province, developed over a 7 Myr period (61–54Ma) and is characterized by a complex suite of lavas, hypabyssaland intrusive rocks of picritic to granitic composition. Theintrusion of magma from mantle to crust at 2x10–3km3/yr(6 Mt/yr) advected magmatic heat of roughly 0·2 GW averagedover the period of magmatism supporting an ‘excess’heat flux of about 130 mW/m2, or about twice the present-dayaverage continental heat flow. The volume of new crust generatedat Skye (15000 km3) spread over the present-day area of Skyecorresponds to 9 km of new crust. The geochemical evolutionof the Skye magmatic system is constrained using the Energy-ConstrainedRecharge, Assimilation, and Fractional Crystallization (EC-RAFC)model to understand variations in the Sr- and Pb-isotopic andSr trace-element composition of the exposed magmatic rocks withtime. The character (composition and specific enthalpy) of bothassimilant and recharge magma appears to change systematicallyup-section, suggesting that the magma reservoirs migrated toprogressively shallower levels as the system matured. The modelof the magma transport system that emerges is one in which magmabatches are stored initially at lower-crustal levels, wherethey undergo RAFC evolution. Residual magma from this stagethen migrates to shallower levels, where mid-crustal wall rockis assimilated; the recharge magma at this level is characterizedby an increasingly crustal signature. For some of the stratigraphicallyyoungest rocks, the data suggest that the magma reservoirs ascendedinto, and interacted with, upper-crustal Torridonian metasediments. KEY WORDS: assimilation; EC-RAFC model; geochemical modelling; magma recharge; Skye magmatism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号