首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

2.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

3.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

4.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust ‘envelopes’ is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

5.
Abstract– Recent spacecraft missions to comets have reopened a long‐standing debate about the histories and origins of cometary materials. Comets contain mixtures of anhydrous minerals and ices seemingly unaffected by planetary processes, yet there are indications of a hydrated silicate component. We have performed aqueous alteration experiments on anhydrous interplanetary dust particles (IDPs) that likely derived from comets. Hydrated silicates rapidly formed from submicrometer amorphous silicates within the IDPs at room temperature in mildly alkaline solution. Hydrated silicates may thus form in the near‐surface regions of comets if liquid water is ever present. Our findings provide insight into origins of cometary IDPs containing both anhydrous and hydrated minerals and help reconcile the seemingly inconsistent observations of hydrated silicates from the Stardust and Deep Impact missions.  相似文献   

6.
《Planetary and Space Science》1999,47(8-9):1029-1050
We predict the amount of cometary, interplanetary, and interstellar cosmic dust that is to be measured by the Cometary and Interstellar Dust Analyzer (CIDA) and the aerogel collector on board the Stardust spacecraft during its fly-by of comet P⧸Wild 2 and during the interplanetary cruise phase. We give the dust flux on the spacecraft during the encounter with the comet using both, a radially symmetric and an axially symmetric coma model. At closest approach, we predict a total dust flux of 1060 m−2 s−1 for the radially symmetric case and 1065 m−2 s−1 for the axially symmetric case. This prediction is based on an observation of the comet at a heliocentric distance of 1.7 AU. We reproduce the measurements of the Giotto and VEGA missions to comet P⧸Halley using the same model as for the Stardust predictions. The planned measurements of interstellar dust by Stardust have been triggered by the discovery of interstellar dust impacts in the data collected by the Ulysses and Galileo dust detector. Using the Ulysses and Galileo measurements we predict that 25 interstellar particles, mainly with masses of about 10−12 g, will hit the target of the CIDA experiment. The interstellar side of the aerogel collector will contain 120 interstellar particles, 40 of which with sizes greater than 1 μm. Furthermore, we investigate the contamination of the CIDA and collector measurements by interplanetary particles during the cruise phase.  相似文献   

7.
Abstract– The Stardust collector shows diverse aerogel track shapes created by impacts of cometary dust. Tracks have been classified into three broad types (A, B, and C), based on relative dimensions of the elongate “stylus” (in Type A “carrots”) and broad “bulb” regions (Types B and C), with occurrence of smaller “styli” in Type B. From our experiments, using a diverse suite of projectile particles shot under Stardust cometary encounter conditions onto similar aerogel targets, we describe differences in impactor behavior and aerogel response resulting in the observed range of Stardust track shapes. We compare tracks made by mineral grains, natural and artificial aggregates of differing subgrain sizes, and diverse organic materials. Impacts of glasses and robust mineral grains generate elongate, narrow Type A tracks (as expected), but with differing levels of abrasion and lateral branch creation. Aggregate particles, both natural and artificial, of a wide range of compositions and volatile contents produce diverse Type B or C shapes. Creation of bulbous tracks is dependent upon impactor internal structure, grain size distribution, and strength, rather than overall grain density or content of volatile components. Nevertheless, pure organic particles do create Type C, or squat Type A* tracks, with length to width ratios dependent upon both specific organic composition and impactor grain size. From comparison with the published shape data for Stardust aerogel tracks, we conclude that the abundant larger Type B tracks on the Stardust collector represent impacts by particles similar to our carbonaceous chondrite meteorite powders.  相似文献   

8.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

9.
In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low‐density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in‐situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3‐mediated electron beam–induced etching. The porous, low‐density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy‐dispersive X‐ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.  相似文献   

10.
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about 1 μm. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the −2.6 to −3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.  相似文献   

11.
The available literature on sources, chemical composition, and importance of dust particles for the origins of life is analyzed. The most abundant sources of dust on the early terrestrial planets are sedimentation of interplanetary dust, meteoritic/cometary impacts, and volcanic eruptions. Interplanetary dust can originate directly from interstellar space, from evaporation of cometary bodies, from collisional destruction of asteroidal and meteoritic bodies, and nucleation in sunspots. Many rather complex organic species, including those of prebiotic interest, have been identified in the interstellar medium and cometary dust. Some of them are believed to formvia catalytic processes on the surfaces of dust particles. However, the mechanisms are not known, and even simulating experiments are difficult to perform due to insufficient knowledge of physical conditions in the space media and of chemical composition and properties of the dust. Besides the catalytic roles, cometary dust is believed to be the best delivery vehicle for organic matter of space origin to the atmospheres of terrestrial planets. Abundant sources of catalytically active fine dust can be volcanoes. Various organic and biological compounds have been found in terrestrial volcanic gases and ash, which are assumed to formvia the catalytic Fischer-Tropsch reactions. At present the eruptions on the Earth provide a unique opportunity to observein situ the formation of organic matter, and knowledge of the ash composition and local conditions allows to perform simulating experiments.  相似文献   

12.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   

13.
The Stardust mission returned two types of unprecedented extraterrestrial samples: the first samples of material from a known solar system body beyond the moon, the comet 81P/Wild2, and the first samples of contemporary interstellar dust. Both sets of samples were captured in aerogel and aluminum foil collectors and returned to Earth in January 2006. While the analysis of particles from comet Wild 2 yielded exciting new results, the search for and analysis of collected interstellar particles is more demanding and is ongoing.Novel dust instrumentation will tremendously improve future dust collection in interplanetary space: an Active Cosmic Dust Collector is a combination of an in-situ dust trajectory sensor (DTS) together with a dust collector consisting of aerogel and/or other collector materials, e.g. such as those used by the Stardust mission. Dust particles’ trajectories are determined by the measurement of induced electrical signals when charged particles fly through a position sensitive electrode system. The recorded waveforms enable the reconstruction of the velocity vector with high precision.The DTS described here was subject to performance tests at the Heidelberg dust accelerator at the same time as the recording of impact signals from potential collector materials. The tests with dust particles in the speed range from 3 to 40 km/s demonstrate that trajectories can be measured with accuracies of ~1° in direction and ~1% in speed. The sensitivity of the DTS electronics is of the order of 10?16 C and thus the trajectory of cosmic dust particles as small as 0.4 μm size can be measured. The impact position on the collector can be determined with better than 1 mm precision, which will ease immensely the task of locating sub-micron-sized particles on the collector. Statistically significant numbers of trajectories of interplanetary and interstellar dust particles can thus be collected in interplanetary space and their compositions correlated with their trajectories.  相似文献   

14.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust envelopes is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

15.
Abstract— The elemental compositions of 200 interplanetary dust particles (IDPs) collected in the stratosphere have been determined by energy dispersive X-ray (EDX) analysis. The results reasonably define the normal compositional range of chondritic interplanetary dust particles averaging 10 micrometers in size, and constitute a database for comparison with individual IDPs, meteorites, and spacecraft data from comets and asteroids. The average elemental composition of all IDPs analyzed is most similar to that of CI chondrites, but the data show that there are small yet discernable differences between mean IDP composition and the CI norm. Individual particles were classified into broad morphological groups, and the two major groups show unambiguous compositional differences. The “porous” group is a close match to bulk CI abundances, but the “smooth” group has systematic Ca and Mg depletions, and contains stoichiometric “excess” oxygen consistent with the presence of hydrous phases. Similar depletions of Ca and Mg in CI and CM matrix have been attributed to leaching, and by analogy we suggest that particles in the smooth group have also been processed by aqueous alteration. The occurrence of carbonates, magnetite framboids, and layer silicates provides additional evidence that at least a significant number of the smooth-class IDPs have been substantially processed by aqueous activity. The presence or absence of aqueous modification in members of a particle sub-class is an important clue to the origin. Although it cannot be proven, we hypothesize that extensive aqueous activity only occurs in asteroids and that, accordingly, the smooth class of IDPs has an asteroidal origin. If both comets and asteroids are major sources of interplanetary dust, then by default the porous particles are inferred to be dominated by cometary material.  相似文献   

16.
Assuming that similar organic components as in comet 81P/Wild 2 are present in incoming meteoroids, we try to anticipate the observable signatures they would produce for meteor detection techniques. In this analysis we consider the elemental and organic components in cometary aggregate interplanetary dust particles and laboratory analyses of inter- and circumstellar carbon dust analogues. On the basis of our analysis we submit that (semi) quantitative measurements of H, N and C produced during meteor ablation will open an entire new aspect to using meteoroids as tracers of these volatile element abundances in active comets and their contributions to the mesospheric metal layers.  相似文献   

17.
Abstract— New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm?3 (similar to soda‐lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by μm‐scale and smaller sub‐grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse finegrained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.  相似文献   

18.
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 “Febo” in aerogel, which contains fine‐grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine‐grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Dark‐field imaging and multidetector energy‐dispersive X‐ray mapping were used to compare GEMS‐like‐objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS‐like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant, is present, consistent with ablation, melting, abrasion, and mixing of the SiOx aerogel with crystalline Fe‐sulfide and minor enstatite, high‐Ni sulfide, and augite identified by elemental mapping in the terminal particle. Thus, GEMS‐like objects in “caches” of fine‐grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.  相似文献   

19.
Astrophysical and cosmochemical data show that many kinds of hydrocarbons are widespread in space, including giant molecular clouds, diffuse interstellar medium, comets, interplanetary dust particles, and carbonaceous meteorites. Here an effort is made to show the close relation between high-molecular weight hydrocarbons observed in space and existing on Earth. Results of astrochemical modelling of dust grains in dense collapsing cores of giant molecular clouds are also presented. They show that about 10% of the total abundance of dust grains may be the result of aliphatic hydrocarbons. This dust serves as initial material for comets, formed in protosolar nebula. The problem of survival of cometary organics during impact onto the Earth is discussed, and it is shown that the so-called soft-landing comet hypothesis may explain the accumulation of complex hydrocarbons on the Earth's surface. We conclude that a significant fraction of terrestrial prebiotic petroleum was delivered by extraterrestrial matter.  相似文献   

20.
Aerogel collectors have been deployed in low-Earth orbit to collect orbital debris and micrometeorites. An array of silica aerogel collectors is currently en-route back to Earth following an encounter with the Comet Wild-2 on board the Stardust spacecraft. Stardust is returning, for laboratory analysis, cometary and interstellar dust grains which impacted into the aerogel collectors at hypervelocities. While the morphology of impact craters in aerogels has been studied empirically, a theoretical understanding of the physical mechanisms responsible for the formation of impact craters in these solids is lacking. Here we propose and test a model of compaction driven impact cratering in aerogels. Our model derives impact crater dimensions directly from energy and momentum deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号