首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99.Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere.Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10–20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced turbulence rates and an increase of gravity wave activity in the altitude range 70–85 km.  相似文献   

2.
为了分析台风这类强对流诱发平流层重力波的过程,本文利用中尺度数值模式WRF-ARW(V3.5)和卫星高光谱红外大气探测器AIRS数据对2011年第9号强热带气旋"梅花"的重力波特征进行了分析.首先,针对模式输出的垂直速度场资料的分析表明,台风在对流层各个方向上几乎都具有诱发重力波的能量,而在平流层内则呈现出只集中于台风中心以东的半圆弧状波动,且重力波到达平流层后其影响的水平范围可达1000km.此外,平流层波动与对流层雨带在形态、位置以及尺度上均具有一定的相似性.其次,对风场的分析结果表明,不同高度上波动形态的差异主要是由于重力波垂直上传的过程中受到了平流层向西传的背景风场以及风切变的调制作用,揭示了重力波逆着背景流垂直上传的特征.随后,基于FFT波谱分析的结果表明,"梅花"诱发的平流层重力波水平波长中心值达到了1000km,周期在15~25h,垂直波长主要在8~12km.最后,利用AIRS观测资料分析了平流层30~40km高度上的大气波动,得到了与数值模拟结果相一致的半圆弧状波动.对比结果也验证了WRF对台风诱发平流层重力波的波动形态、传播方向、不同时刻扰动强度的变化以及影响范围的模拟效果.此外,也揭示了多资料的结合对比有助于更加全面地了解台风诱发平流层重力波的波动特征.  相似文献   

3.
中层大气重力波的全球分布特征   总被引:6,自引:3,他引:3       下载免费PDF全文
从2002年1月到2009年12月的SABER温度剖面数据提取了可以反映重力波活动的垂直尺度2~10 km的中尺度温度扰动,分析了全球中层大气重力波的分布.重力波扰动在夏季和冬季明显强于春季和秋季,而冬季与夏季相比,在70 km以下的高度夏季弱于冬季,在70 km以上夏季比冬季要强.从全球重力波分布来看,较大值分布在冬...  相似文献   

4.
Part 2 of the present paper is focused on the planetary wave coupling from the stratosphere to the lower thermosphere (30–120 km) during the Arctic winter of 2003/2004. The planetary waves seen in the TIMED/SABER temperature data in the latitudinal range 50°N–50°S are studied in detail. The altitude and latitude structures of the planetary wave (stationary and travelling) clearly indicate that the stratosphere and mesosphere (30–90 km) are coupled by direct vertical propagation of the planetary waves, while the lower thermosphere (above 90–95 km altitude) is only partly connected with the lower levels probably indirectly through in-situ generation of disturbances by the dissipation and breaking of gravity waves filtered by lower atmospheric planetary waves. A peculiar feature of the thermal regime in the lower thermosphere is that it is dominated by zonally symmetric planetary waves.  相似文献   

5.
The results of numerical experiments on the modeling of thermospheric and ionospheric disturbances under conditions of sudden stratospheric warming are presented to study the possible mechanisms of such disturbances. Local disturbances caused by a planetary wave with zonal wave number s = 1 and internal gravity waves (IGWs) propagating from the disturbed region in the stratosphere are taken into account as sources of disturbances. It is shown that the inclusion of an additional source of thermospheric disturbances caused by mesospheric variations of atmospheric parameters with IGW periods over the region of sudden stratospheric warming leads to significant changes in the parameters of the thermosphere and ionosphere, including a change in the global structure of the distributions of the gas components of the thermosphere and a shift in maximum concentrations of atomic oxygen to low latitudes of the Southern Hemisphere; there is an increase in the mean values, the diurnal and semidiurnal variations of the ion concentration in the F region of the ionosphere. These features of changes in the parameters of the thermosphere and ionosphere occurred with insignificant disturbances of tidal variations in the thermosphere.  相似文献   

6.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

7.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

8.
The variability of stratospheric planetary waves and their possible connection with the 11-year solar cycle forcing have been investigated using annual-mean temperatures for the period of 1958–2001 derived from two reanalysis data sets. The significant planetary waves (wavenumbers 1–3) can be identified in the northern mid-high latitudes (55–75°N) in the stratosphere using this data. Comparisons with satellite-retrieved products from the Microwave Sounding Unit (MSU) confirm the significant planetary wave variability seen in the reanalyses. A planetary wave amplitude index (PWAI) is defined to indicate the strength of the stratospheric planetary waves. The PWAI is derived from Fourier analysis of the temperature field for wavenumbers 1–3 and averaged over 55–75°N latitude and the 70–20 hPa layers. The results include two meaningful inter-annual oscillations (2- and 8-year) and one decadal trend (16-year) that was derived from wavelet analysis. The stratospheric temperature structure of the wave amplitudes appear associated with the Arctic Oscillation (AO) which explicitly changed with the PWAI. The temperature gradients between the polar and mid-high latitudes show opposite tendencies between the top-10 strong and weak wave regimes.The variation of the planetary wave amplitude appears closely related to the solar forcing during the recent four solar cycles (20–23). The peak of the 2-year oscillation occurs synchronously with solar minimum, and is consistent with the negative correlation between the PWAI and the observed solar UV irradiance. The UV changes between the maxima and minima of the 11-year solar cycle impact the temperature structure in the middle-lower stratosphere in the mid-high latitudes and hence influence the planetary waves. During solar maximum, the dominant influence appears to be exerted through changes in static stability, leading to a reduction in planetary wave amplitude. During solar minimum, the dominant influence appears to be exerted through changes in the meridional temperature gradient and vertical wind shear, leading to an enhancement of planetary wave amplitude.  相似文献   

9.
This study first investigates the effect of the Madden-Julian Oscillation(MJO) on the Northern Hemisphere(NH)mesosphere. Both observations and simulations suggest significant cooling in the NH polar mesosphere approximately 35 days after MJO phase 4(P4), which lags the MJO-induced perturbation in the upper stratosphere by 10 days. The enhanced planetary waves(PWs) propagate upward and result in wavenumber-1 pattern temperature anomalies in the mesosphere lagging MJO P4 by 25 days. The anomalous PWs also lead to the weaker eastward zonal wind in the upper stratosphere and lower mesosphere lagging MJO P4 by 30 days. Simultaneously, the weaker westerlies result in weaker climatological westward gravity waves(GWs) in the mesosphere due to critical-level filtering. The mesosphere meridional circulation is suppressed due to both anomalous PWs and GWs, and this suppression causes polar mesospheric cooling lagging MJO P4 by 35 days.  相似文献   

10.
Summary Calculations are carried out of upward propagation of a tropospherically forced 10-day planetary wave into the upper middle atmosphere with the use of the COMMA-R model of the University of Cologne, of its transformation into a wave in electron density by means of the model of the Comenius University, and of its final transformation into a wave in radio wave absorption in the lower ionosphere applying the computer code of the Geophysical Institute. The calculations show that the absorption may be used for investigating the planetary wave activity, particularly of its long-term trends. The possibility of propagation of planetary waves from the winter hemisphere to the summer hemisphere is illustrated, which could contribute to explanation of the occurrence of travelling planetary waves in the mesosphere in summer.Dedicated to the Memory of Professor Karel P  相似文献   

11.
Periods of planetary waves, especially the 10- and 16-day waves, were found in Fourier analyses of 10-year geomagnetic time series from two mid-latitude stations in the northern hemisphere. This suggests that planetary waves influence geomagnetic variations. Cross-spectral analysis of magnetic time series from seven stations located at around 50°N at the beginning of 1979, when a 16-day wave occurred in the stratosphere, also shows a 16-day oscillation. However, study of the phases does not reveal the horizontal direction of wave propagation. Furthermore, the temporal variations of the 16-day oscillation in magnetic time series are presented as dynamic spectra and the results are compared with global investigations of geopotential height data at 1 hPa (around 48 km) with respect to the 16-day wave for the same time interval. In some cases this comparison suggests a clear correlation between geomagnetic variations and planetary waves as well as a propagation of the 16-day wave up to the dynamo region (100-170 km).  相似文献   

12.
We present results from the Numerical Spectral Model (NSM), which focus on the temperature environment of the mesopause region where polar mesospheric clouds (PMC) form. The PMC occur in summer and are observed varying on time scales from months to years, and the NSM describes the dynamical processes that can generate the temperature variations involved. The NSM simulates the quasi-biennial oscillation (QBO), which dominates the zonal circulation of the lower stratosphere at equatorial latitudes. The modeled QBO extends into the upper mesosphere, due to gravity wave (GW) filtering, consistent with UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, the associated temperature variations extend to high latitudes. The meridional circulation redistributes the QBO energy—and the resulting temperature oscillations away from the equator produce inter-annual variations that can exceed 5 K in the polar mesopause region, with considerable differences between the two hemispheres. The NSM shows that the 30-month QBO produces a 5-year or semi-decadal (SD) oscillation, and stratospheric NCEP data provide observational evidence for that. This SD oscillation extends in the temperature to the upper mesosphere, where it could contribute to the long-term variations of the region.  相似文献   

13.
Vertical coupling in the low-latitude atmosphere–ionosphere system driven by the 5-day Rossby W1 and 6-day Kelvin E1 waves in the low-latitude MLT region has been investigated. Three different types of data were analysed in order to detect and extract the ∼6-day wave signals. The National Centres for Environmental Prediction (NCEP) geopotential height and zonal wind data at two pressure levels, 30 and 10 hPa, were used to explore the features of the ∼6-day waves present in the stratosphere during the period from 1 July to 31 December 2004. The ∼6-day wave activity was identified in the neutral MLT winds by radar measurements located at four equatorial and three tropical stations. The ∼6-day variations in the ionospheric electric currents (registered by perturbations in the geomagnetic field) were detected in the data from 26 magnetometer stations situated at low latitudes. The analysis shows that the global ∼6-day Kelvin E1 and ∼6-day Rossby W1 waves observed in the low-latitude MLT region are most probably vertically propagating from the stratosphere. The global ∼6-day W1 and E1 waves seen in the ionospheric electric currents are caused by the simultaneous ∼6-day wave activity in the MLT region. The main forcing agent in the equatorial MLT region seems to be the waves themselves, whereas in the tropical MLT region the modulated tides are also of importance.  相似文献   

14.
The long-term variability of stationary and traveling planetary waves in the lower stratosphere has been investigated using the data of NCEP/NCAR reanalysis. The results obtained show that during the last decades winter-mean amplitude of the stationary planetary wave with zonal wave number 1 (SPW1) increases at the higher middle latitudes of the Northern Hemisphere. It has been suggested that the observed increase in the SPW1 amplitude should be accompanied by the growth in the magnitude of the stratospheric vacillations. The analysis of the SPW1 behavior in the NCEP/NCAR data set supports this suggestion and shows a noticeable increase with time in the SPW1 intra-seasonal variability. The amplitudes of the long-period normal atmospheric modes, the so-called 5-, 10- and 16-day waves, diminish. It is supposed that one of the possible reasons for this decrease can be a growth of radiative damping rate caused, for instance, by the increase of CO2. To investigate a possible climatic change of the middle atmosphere dynamics caused by observed changes in the tropospheric temperature, two sets of runs (using zonally averaged temperature distributions in the troposphere typical for January 1960 and 2000) with the middle and upper atmosphere model (MUAM) have been performed. The results obtained show that on average the calculated amplitude of the SPW1 in the stratosphere increased in 2000 and there is also an increase of its intra-seasonal variability conditioned by nonlinear interaction with the mean flow. This increase in the amplitudes of stratospheric vacillations during the last four decades allows us to suggest that stratospheric dynamics becomes more stochastic.  相似文献   

15.
In this paper we present an extension for the 2D (zonal mean) version of our numerical spectral mode (NSM) that incorporates Hines’ Doppler spread parameterization (DSP) for small-scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model is extended to reproduce the upwelling at equatorial latitudes that is associated with the Brewer–Dobson circulation — which affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. In the presence of GW, this upwelling is produced in our model with tropospheric heating, which generates also zonal jets outside the tropics similar to those observed. The resulting upward vertical winds increase the period of the QBO. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Associated with this QBO are interannual and interseasonal variations that become increasingly more important at higher altitudes — and this variability is interpreted in terms of GW filtering that effectively couples the dynamical components of the mesosphere. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extra-tropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics, but the effects are small for the zonal winds.  相似文献   

16.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

17.
Observational studies on the semiannual oscillation in the tropical stratosphere and mesosphere are reviewed. Results of many statistics based on rocket and satellite observations reveal that the long-term behavior of the mean zonal wind exhibits two semiannual cycles which have their maximum amplitudes centered at the stratopause level and the mesopause level, each one being associated with the semiannual temperature variations predominating at levels about 10 km lower.Observational evidence obtained from recent studies of the dynamical properties of upper stratospheric waves strongly supports the theoretical consideration that the stratospheric semiannual oscillation is the manifestation of the wave-zonal flow interaction with alternating accelerations of the westerly flow by Kelvin waves and the easterly flow by planetary Rossby waves.Regarding the semiannual variation in the upper mesosphere, however, very little is known about the possible momentum source. Therefore, emphasis is placed on the need for further observations of the structure and behavior of the tropical middle atmosphere.  相似文献   

18.
Zonal mean data and amplitudes and phases of planetary zonal waves were derived from daily hemispheric maps for tropospheric and stratospheric levels, for the four winters 1975–76 to 1978–79. Important year-to-year fluctuation in zonal means and wave activity are described, most notable of which are the changes from 1975–76 to 1976–77. Comparison of the relative strengths of the stratospheric and tropospheric jet streams shows a strong negative correlation (–0.8) between monthly mean zonal stratospheric winds (at 10 mb, 65°N) and zonal tropospheric winds (at 200 mb, 32.5°N, in the jet core) and a positive correlation (+0.7) between the stratospheric 10 mb winds and the tropospheric 200 mb winds at 65°N. Parameters correlated were the departures from the climatological mean zonal winds. The structure of correlation between wave amplitudes in the same wave number (1, 2) at different altitudes and between wave numbers 1 and 2 is investigated. We find a high correlation (+0.93) between wave 1 in the stratosphere (10 mb height) and wave 2 (height) in the troposphere at 65°N; but only a weak correlation (+0.2) between wave 1 amplitudes in the stratosphere and troposphere. These results suggest the possible importance of wave-wave interactions in processes linking the stratosphere and troposphere. The wave correlations presented here are based on comparisons of monthly means of daily amplitudes; the correlation structure in individual wave developments may differ, in view of the likelihood of altitudinal lags in wave amplification.  相似文献   

19.
20.
The global pattern of long-term trends and changes in the upper atmosphere and ionosphere has been presented by Laštovička et al. [2006a. Global change in the upper atmosphere. Science 314 (5803), 1253–1254]. Trends in the mesospheric temperature, electron concentration in the lower ionosphere, electron concentration and height of its maximum in the E-region, electron concentration in the F1-region maximum, thermospheric neutral density and F-region ion temperature qualitatively agree with consequences of the enhanced greenhouse effect and form a consistent pattern of global change in the upper atmosphere. Three groups of parameters were identified as not-fitting this global pattern, the F2-region ionosphere, mesospheric water vapour, and the mesosphere/upper thermosphere dynamics. The paper reports progress in development of the global pattern of trends with emphasis to these three open problems. There are several other factors contributing to long-term trends, namely the stratospheric ozone depletion, mesospheric water vapour concentration changes, long-term changes of geomagnetic activity and of the Earth's magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号