首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The profiles of the plasma density in the topside ionosphere, according to the data of sounding on board the Intercosmos-19 satellite, are presented. It is shown that the large-scale fluctuations of the plasma density can be related to the propagation and attenuation of the atmospheric waves (e.g., acoustic gravity waves) in the dynamo region of the ionosphere. In the topside ionosphere, suprathermal particle fluxes can be formed and the plasma density can be modulated at an attenuation of small-scale electrostatic fluctuations of the plasma electron component in plasma pits. Plasma vortices can be formed when polarization fluxes of charged particles escape from regions of heating. The vortex field imparts stability to the inhomogeneous plasma structure, necessary for experimental detection of this structure.  相似文献   

2.
Plasma inhomogeneities extending along geomagnetic field lines in the ionosphere and magnetosphere can have a vortex structure. Electromagnetic waves can propagate in plasma inhomogeneities in the waveguide channel mode. It has been indicated that energy and particle fluxes related to the development of small-scale electrostatic turbulence in a magnetized plasma with an unstable electron component promotes an increase in plasma density gradients in the walls of waveguide channels and an enhancement in plasma vortices. At low L shells in the region of the geomagnetic equator, the development of plasma electrostatic instability and the damping of drifting plasma vortices in the inhomogeneous geomagnetic field in the topside ionosphere can be the main mechanism by which large-scale (∼1000 km) regions with a decreased plasma density are formed.  相似文献   

3.
The density and temperature of the plasma electron component and wave emission intensity in the topside ionosphere were measured by the INTERCOSMOS-19 satellite. In the subauroral ionosphere, a decrease in the plasma density correlates with an increase in the plasma electron component temperature. In this case, the additional increase in the electron component temperature was measured in regions with increased plasma density gradients during the substorm recovery phase. In a linear approximation, the electromagnetic wave growth increments are small on electron fluxes precipitating in the auroral zone. It has been indicated that Bernstein electromagnetic waves propagating in the subauroral topside ionosphere can intensify in regions with increased plasma density gradients on electron fluxes orthogonal to the geomagnetic field, which are formed when plasma is heated by decaying electrostatic oscillations of the plasma electron component. This can be one of the most important factors responsible for the intensification of auroral kilometric radiation.  相似文献   

4.
A standard pair of equations is used to describe the behaviour of a single monoenergetic particle (proton or electron) population on a geomagnetic flux tube drifting in the magnetosphere. When particle losses from the drifting flux tube into the ionosphere are neglected, this behaviour is adiabatic in a thermodynamic sense. For a population of particles with an isotropic pitch-angle distribution, the generalization of that system of equations is obtained by adding radial and azimuthal spatial diffusion terms. The magnetic field is taken to be dipolar in the inner magnetosphere. The potential electric field is assumed to consist of magnetospheric convection and corotation components. Experimental data are used to estimate the radial equatorial profiles of the plasma sheet pressure. Assuming that the local time and L-shell variations are separable and supposing steady-state conditions, the expressions for the diffusion tensor components are evaluated. The influence of spatial diffusion on the radial and azimuthal profiles of the plasma pressure in the inner plasma sheet is also discussed.  相似文献   

5.
It has been indicated that the spectrum of electrostatic waves in the ionospheric plasma depends on the geophysical conditions and solar wind parameters. The wave field measurements in the frequency band 0.1–10 MHz in the topside ionosphere were used to analyze the electrostatic instabilities of the plasma electron content (the APEX satellite experiment). A change of the sign of one magnetic field component at the geomagnetic equator can result in the formation of the large-scale irregular plasma structure with a decay of the natural electrostatic oscillations and vortices in unstable plasma. The plasma particle polarization drift from the region of decay of electrostatic oscillations and vortices can cause large plasma density and temperature gradients across the geomagnetic field. New vortices can originate at these gradients. This mechanism of plasma vortex formation and decay can be important for mass and energy convection in the topside ionosphere.  相似文献   

6.
Chung Park (1938–2003) was a true pioneer of magnetosphere–ionosphere coupling research. During a short career at Stanford University that began in 1970 and ended in 1981, he wrote seminal papers on several topics. Using ground-based whistler data, he was the first to demonstrate experimentally that day-side upward ion flow from the mid-latitude ionosphere was sufficient to maintain the night-time ionosphere. He made the only measurements to date of longitudinally localized drainage of significant quantities of plasmaspheric plasma into the underlying ionosphere during a period of enhanced convection activity. He pioneered in demonstrating the presence at ionospheric heights of geophysically important electric fields that originate in the troposphere in thunderstorm centers. He cooperated in a unique study of the guidance of whistler-mode waves by field-aligned density irregularities (ducts) in the magnetosphere. Park provided unique observational data on nonlinear wave–particle interaction processes such as: (i) the development of sidebands during the injection of whistler-mode waves from Siple, Antarctica, and (ii) the mysterious whistler precursor phenomenon. Today, in spite of the several decades that have elapsed since his work, Park's early findings remain cornerstones of our understanding of magnetosphere–ionosphere coupling processes. Some of his later studies of non-linear magnetospheric wave–particle interaction phenomena have stirred lively debate, and today remain relevant to a number of topics in space plasma wave research.  相似文献   

7.
Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statistical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.  相似文献   

8.
A broad outline is presented of what has been learned over the past decade concerning magnetosphere–ionosphere (M-I) coupling, dynamic interchanges of particles and electromagnetic energy between magnetically conjugate regions of near-Earth space. Although the concept of M-I coupling is useful for relating characteristics of distant source regions to ionospheric signatures, it is fundamentally incomplete, and must include connections to the interplanetary medium. With single satellite missions “we’ve gone about as far as we can go”. Ground-based magnetometer, optical and/or radar measurements are now routinely integrated with complementary data acquired by satellites to interpret electrodynamic signatures. Simultaneous measurements in the ionosphere and magnetosphere show that Alfvén waves at Pi 2 frequencies are important sources of M-I coupling near times of substorm onsets. The same measurements suggest that the braking of bursty bulk flow (BBF) structures is not important for triggering substorms. M-I coupling signatures of BBFs in the nightside ionosphere are compared with those of flux transfer and impulsive penetration events on the dayside. We then explore some implications of the hypothesis that BBF plasma is initially accelerated near the equatorial plane. Subsequent braking would result from electrodynamic coupling which redistributes energy and momentum to plasma in the high latitude parts of flux tubes and in the ionosphere.  相似文献   

9.
参量衰减不稳定性(Parametric Decay Instability,PDI)在大功率高频(High frequency,HF)电波与电离层等离子体相互作用的过程中扮演着十分重要的角色,本文采用广义Zakharov方法对常规的等离子体流体力学方程组进行相应处理后,并在近似实际的电离层背景和电波传播模型下,构建了高频电波加热电离层激发PDI的数值计算模型.模拟结果发现:在毫秒量级的时间尺度上,大功率高频电波在寻常波(Ordinary wave,O波)反射点高度附近激发出了朗缪尔波(Langmuir wave)和离子声波(Ion-Acoustic wave)两种等离子体静电波模,模拟中产生的朗缪尔波和离子声波相应波数为5~11rad·m~(-1),结果与利用色散关系求出的理论值4~7 rad·m~(-1)近似一致,密度扰动幅值从10~6m~(-3)量级指数级增长到了10~(10)m~(-3)量级,直至能显著影响与"低频"密度背景相关的等离子体频率后,出现了等离子体"空穴"结构以及朗缪尔波被"俘获"现象,在扰动空间内的小尺度静电场幅值最高能达到100 V·m~(-1)量级,最终造成一种强烈的局地化"空穴"湍流现象.本文的研究有助于深入理解PDI的物理机制,对研究大功率高频电波与电离层等离子体之间复杂的非线性相互作用也有着非常重要的意义.  相似文献   

10.
The high-latitude ionosphere interfaces with the hot, tenuous, magnetospheric plasma, and a heat flow into the ionosphere is expected, which has a large impact on the plasma densities and temperatures in the high-latitude ionosphere. The value of this magnetospheric heat flux is unknown. In an effort to estimate the value of the magnetospheric heat flux into the high-latitude ionosphere, and show its effect on the high-latitude ionospheric plasma densities, we ran an ensemble of model runs using the Ionosphere Forecast Model (IFM) with different values of the heat flux through the upper boundary. These model runs included heating from both auroral and solar sources. Then, for each heat flux value, the plasma densities obtained from the model runs, at 840 km, were compared to the corresponding values measured by the DMSP F13 satellite. The heat flux value that gave the best comparison between the measured and calculated plasma densities was considered to be the best estimate for the topside heat flux. The comparison was conducted for a 1-year data set of the DMSP F13 measured plasma densities (4300 consecutive orbits). Our systematic IFM/DMSP plasma density comparisons indicate that when a zero magnetospheric downward heat flux is assumed at the upper boundary of the IFM model, on the average, the IFM underestimates the measured plasma densities by a factor of 2. A good IFM/DMSP plasma density comparison was achieved for each month in 1998 when for each month a constant heat flux was assumed at the upper boundary of the model. For the 12-month period, the heat flux values that gave the best IFM/DMSP plasma density comparisons varied on the average from −0.5×1010 to −1.5×1010 eV cm−2 s−1.  相似文献   

11.
Multimoment fluid simulation frameworks, which effectively account for anomalous transport due to microprocesses, combine best features of small-scale kinetic and global-scale MHD models. The most practical models of this type, 1D flux tube models, have been successfully used for realistic simulations of space plasmas including polar wind and magnetosphere–ionosphere coupling processes characterized by a wide range of temporal and spatial scales. Our earlier flux tube models with field-aligned current and microprocesses have been formulated for spatially stationary flux tubes. However, horizontal convection due to electric fields is an important aspect of the high-latitude ionosphere–polar wind system and typical time scales of the polar wind upflow are comparable to the transit time across the polar cap. To take into account this important feature we have added flux tube convection to our earlier model. Using typical convecting flux tube that starts outside auroral oval, then enters and leaves downward current region, it has been shown that anomalous transport effects due to current-driven microinstabilities significantly alter dynamics of several plasma moments and should be taken into account for an accurate interpretation and prediction of the observed data. Future applications of our new model have also been discussed.  相似文献   

12.
We discuss the coupled expansion of a plasma cloud and a neutral gas, both originating from a point-like source located in space and submitted to the action of an external flux of ionizing radiation. This problem is relevant to the artificial magnetospheric propulsion scheme for solar system exploration. We establish the relevant space and time scales for particle diffusion and plasma bubble formation. Emphasis is placed on the low ionization and high collisionallity of the plasma near the point source, leading to the existence of a small ionosphere surrounding the source, where (contrary to the more common views of this propulsion scheme) the ions are not magnetized. The possibility of direct plasma creation by an initial purely neutral gas release is also envisaged.  相似文献   

13.
In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the EISCAT VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20–30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV) created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift veloCity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.  相似文献   

14.
利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动   总被引:2,自引:1,他引:1       下载免费PDF全文
海平面的海啸波会产生大气重力波进而引发电离层扰动.本文利用日本GPS总电子含量数据来探测2011年3月11日Tohoku海啸引发的电离层扰动.观测结果表明,在日本上空的电离层中存在两种重力波信号,分别由海平面的海啸波以及地震破裂过程产生.地震产生的电离层重力波分布在震中周围(包括海洋上空以及远离海洋的区域),而海啸引发的电离层重力波主要分布在海洋上空.地震产生的电离层重力波具有不同的水平速度,包括约210 m·s-1以及170 m·s-1,其频率为1.5 mHz;而海啸引发的电离层重力波水平速度快于前者,约为280 m·s-1,其频率为1.0 mHz.此外,海啸引发电离层重力波与海平面上的海啸波有相似的水平速度、方向、运行时间、波形以及频率等传播特征.本文的研究将电离层中的海啸信号与地震信号区分开来,进一步确认电离层对海啸波的敏感性.  相似文献   

15.
Boundary layers occurring in the magnetosphere can support a wide spectrumof plasma waves spanning a frequency range of a few mHz to tens of kHz andbeyond. This review describes the main characteristics of the broadband plasma waves observed in the Earth's low-latitude magnetopause boundary layer (LLBL), in the polar cap boundary layer (PCBL), and the possible generation mechanisms. The broadband waves at the low-latitude boundary layer are sufficiently intense to cause the diffusion of the magnetosheath plasma across the closed magnetospheric field lines at a rate rapid enough to populate and maintain the boundary layer itself. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactionswith the waves can provide sufficient precipitation energy flux to the ionosphere to create the dayside aurora. In general, the broadband plasma waves may play an important part in the processes of local heating/acceleration of the boundary layer plasma.  相似文献   

16.
The possibility to estimate plasma sheet parameters from low-altitude measurements looks quite attractive, but it critically depends on how isotropic the plasma pressure is in the flux tube. To evaluate the ion pressure anisotropy we compare the values of pressure in the ionospheric and equatorial parts of the field line. Ionospheric values were computed from proton measurements at NOAA low-altitude satellites, they were compared with pressure estimates computed from empirical magnetic field models as well as with average values known from direct plasma sheet measurements. Three different methods of mapping the plasma pressure from plasma sheet to low altitude have been tried; each uses the particle isotropic boundaries observed at low altitudes and/or computed from magnetospheric models. Excluding observations obtained during substorm expansion, from these comparisons we conclude that in the plasma sheet, at geocentric distances 9–20RE, the pressure estimates in the ionospheric and equatorial parts of the plasma sheet flux tube agree very well, suggesting a good pressure isotropy and thus justifying a possibility to monitor the plasma sheet parameters based on low-altitude measurements. The results also illustrate the usefulness of isotropic boundaries as a label of tail current intensity and as reliable tool for establishing mapping between magnetosphere and ionosphere.  相似文献   

17.
地球磁尾中重联产生的磁流通管的运动   总被引:1,自引:1,他引:0       下载免费PDF全文
本文通过MHD理论研究了细磁流通管在二维静止平衡介质中的运动.用地球磁尾中的一维细丝来表示流通管,通过数值模拟可以得到细丝随时间变化的一些性质.重联产生的细丝磁场比周围磁场偶极性更强,运动时表现出了很强的地向流.结果还显示了阿尔芬波、慢激波等MHD波从磁层的赤道面传播到地球电离层上并部分地反射回来.细丝在电离层上的足点的赤道向运动滞后于赤道面上的地向运动.虽然在模拟中细丝的初始等离子体压强低于周围压强,但是当它开始迅速向地球方向运动时,它的等离子体压强很快上升到与周围压强相当,甚至有时候大于周围压强的值.  相似文献   

18.
The data of measurements of broadband wave radiation in the main ionospheric trough in the subauroral zone of the topside ionosphere in the region of the day-night terminator (APEX satellite experiment) are presented. It is shown that the observed attenuation of electrostatic radiation in a broad frequency band and fluctuations (variations) in the cutoff frequency of the electrostatic mode spectrum at the level of the local plasma or upper hybrid frequency are related to plasma heating by damping electrostatic oscillations in the ionospheric trough. Waveguide channels for propagation of electromagnetic whistler-mode waves observed on the satellite can be generated during the propagation of a gravity-thermal disturbance from the terminator.  相似文献   

19.
智利地震前DEMETER卫星对空间高能粒子的观测   总被引:2,自引:1,他引:1       下载免费PDF全文
在地震的孕育或发生期间,地球内部岩石圈的活动可能会发出电磁辐射,引起空间电磁扰动,并通过波粒相互作用引起高能电子的投掷角散射,导致高能电子的沉降.本文基于法国DEMETER卫星的观测数据,研究了智利周围区域在智利地震期间空间高能电子的通量、能谱的分布及演化,发现在智利地震发生前第11天和12天,在以震中为中心,经度跨度10°,在DEMETER卫星轨道高度上L跨度0.1的区域内,有超出背景4到6倍的高能带电粒子暴的出现,期间在其北半球磁镜像区域也观测到了显著的电子通量涨高.粒子暴对应的能谱与2010年前三个月的平均能谱存在较大差异.同时观测到在出现粒子暴的两条轨道上VLF(Very Low Frequency,甚低频)电场频谱分别在300 Hz以下以及13~20 kHz的频段存在显著增强,此扰动在时间和地理位置上与高能粒子暴是一致的.基于回旋共振耦合作用的准线性扩散理论,本文对所观测事例的电子能量与电磁场扰动频率做了分析计算.观测数据和理论计算有较好的一致性,表明该粒子暴源自ICE(Instrument Champ Electrique,电磁探测器)观测到的空间电磁扰动,这是典型的空间波粒耦合事例.进一步分析排除了可能引起粒子暴和VLF电场扰动的环境因素,本文认为本次粒子暴和电场扰动的观测可能与智利地震的震前地壳活动存在一定关联.  相似文献   

20.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号