首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
Although the spatial distribution of hydrothermal vent assemblages in relation to environmental conditions has been assessed in several studies, there is little documented data on the temporal variation of the fauna and corresponding abiotic factors in a vent community. Here, we present one of the longest integrated (faunal and environmental data) time series ever obtained in a hydrothermal ecosystem. The data were acquired using the TEMPO ecological module that was deployed between 2006 and 2008 on the Mid-Atlantic Ridge, providing the first insights into the day-to-day variations in a Bathymodiolus azoricus mussel assemblage from the Lucky Strike vent field for the 48 days during which the video camera operated. The time-series yielded additional valuable information on longer-term variation in faunal distribution (comparing ~2 years), temperature (11.7 months) and iron concentrations (3.8 months).Results from daily observations showed that the vent mussel assemblage was quite stable over the 48 days of the study, reflecting the relative stability of environmental conditions during this period. B. azoricus mussels appeared to thrive in areas of very limited hydrothermal fluid input in habitats that are, as in other deep-sea ecosystems, significantly influenced by ocean tidal signals. Variation in species abundance was observed but, with the exception of Mirocaris fortunata shrimp, no links could be established with measured environmental variables. Although we did not observe any clear tidal influence on vent fauna, it is likely that physiological processes and species’ activities are influenced by these periodic variations. Longer time series are currently being acquired by different experiments deployed on the EMSO-Açores MoMAR observatory (2010–2013 and still recording). They should further improve our knowledge of the dynamics of hydrothermal systems and their associated faunal communities.  相似文献   

2.
Deep-sea hydrothermal vents are characterized by steep spatial gradients and high temporal variability in habitat conditions. This leads to the organization of species distribution along spatial habitat gradients, which may constrain food resource utilization and food web structure. We conducted a stable-isotope-based study to test the hypothesis that food resource utilization is constrained by spatial habitat variability at diffuse hydrothermal vents on Axial Volcano, Northeast Pacific. Our study included the ten most biomass-prominent species and considered the temporal change in food web structure at recently created vent sites during three consecutive years. We related species average stable isotopic composition to their position between the center and the periphery of vent sites, using previously published data. Species spread widely along the δ13C axis, and showed a small variability in δ15N. This indicates that most species partition food resources between isotopically different carbon sources, and that they are not organized along predator–prey trophic chains. Particulate organic matter (POM) stable isotopic composition from a concomitant study corresponds to the signature of the expected diet for most organisms. Species average δ13C was significantly correlated to their relative position between the center and the periphery of vent sites. We relate this spatial variability in species isotopic composition to variability in the isotopic signature of both dissolved inorganic carbon (DIC) and POM. This spatial isotopic signal of consumers reveals the spatial structuring of food (POM) production and its consumption by the fauna. Accrual of species during the development of diffuse sites increased the inter-specific spread in δ13C, but did not increase the range in δ15N. Our results show that the spatial organization of species distribution results in a fragmented food web where species partition POM food resources according to their position in space. Shaping of species distribution by habitat gradients therefore constrains food web structure and the occurrence of predator–prey and competitive interactions.  相似文献   

3.
The vestimentiferan tubeworm Ridgeia piscesae is an ecosystem-structuring organism in the hydrothermal vent environments of the Northeast Pacific. During this study, a single representative aggregation of the long-skinny morphotype of R. piscesae from the main endeavor segment was monitored for 3 yr before being collected in its entirety with a hydraulically actuated collection device manipulated in situ by a research vehicle. Vestimentiferan growth rates in this aggregation were determined by staining the exterior of the tubes and measuring newly deposited tube sections. The average growth rate of R. piscesae in this aggregation was very low in both years of the growth study (3.2 mm yr−1). Although the incidence of plume damage from partial predation was very high (>95%), mortality was very low (<4% yr−1). The distribution and the very tight clustering of recently recruited individuals indicated gregarious settlement behavior that is hypothesized to be partly due to biotic cues from settled larvae. Coupled measurements of vent fluid sulfide concentration and temperature were used to calculate the exposure of the vestimentiferans to sulfide from short- and long-term temperature monitoring. Plume-level temperature records indicate that most of the time individuals in this aggregation were exposed to extremely low levels of vent fluid, and therefore sulfide (<0.1 μM), while their posterior sections were consistently exposed to sulfide concentrations in the 100 μM range. A rootball-like structure formed the common base of the aggregation. In contrast to the anterior sections of the tubeworm tubes, the portions of the tubes within the “rootball” were freely permeable to sulfide. The results of this study show that R. piscesae, unlike vestimentiferans from the East Pacific Rise, can survive and grow in areas of low diffuse vent flow with very low plume-level exposure to sulfide. We propose that this morphotype of R. piscesae has the ability to acquire sulfide from sources near their posterior ends, similar to some species of cold seep vestimentiferans from the Gulf of Mexico. The ability of this single species of vestimentiferan to survive low exposure to vent flow with low mortality coupled with sulfide uptake across posterior tube sections may help explain the occurrence of a single vent vestimentiferan species in a wide variety of habitat conditions at hydrothermal vent sites in the Northeast Pacific.  相似文献   

4.
Macrofaunal assemblages with the prevalence of Bresiliidae shrimp and Mytilidae mussels are abundant in the hydrothermal vents along the Mid-Atlantic Ridge. The mussels inhabit the zone of diffuse seeps of hydrothermal fluids with temperature abnormalities up to several degrees. Shrimps inhabit an extreme biotope in the mixed interface between the seawater and the hydrothermal fluid at a temperature up to 20–30°C. We studied the mussel and shrimp assemblages in three hydrothermal vent fields: the Rainbow, Broken Spur, and Snake Pit. The species richness of the mussel assemblages in at least two regions (Broken Spur and Snake Pit) is higher as compared with the shrimps of the same hydrothermal vent fields. The fauna inhibiting the shrimp swarms lack almost any taxa specific for particular assemblages: almost all the taxa are also present in the mussel beds. The structure of the shrimp assemblage is less homogeneous as compared with that of the mussel assemblage. The population prevalence of one taxon (Copepoda) in the shrimp assemblage is most likely connected with the extreme and unstable conditions of the biotope occupied by the shrimps in the hydrothermal field. The taxonomic similarity between the mussel and shrimp assemblages within one hydrothermal vent field is higher as compared with the similarity between the mussel (or shrimp) assemblages from different fields.  相似文献   

5.
Habitat created or modified by the physical architecture of large or spatially dominant species plays an important role in structuring communities in a variety of terrestrial, aquatic, and marine habitats. At hydrothermal vents, the giant tubeworm Riftia pachyptila forms large and dense aggregations in a spatially and temporally variable environment. The density and diversity of smaller invertebrates is higher in association with aggregations of R. pachyptila than on the surrounding basalt rock seafloor. Artificial substrata designed to mimic R. pachyptila aggregations were deployed along a gradient of productivity to test the hypothesis that high local species diversity is maintained by the provision of complex physical structure in areas of diffuse hydrothermal flow. After 1 year, species assemblages were compared among artificial aggregations in low‐, intermediate‐, and high‐productivity zones and compared to natural aggregations of R. pachyptila from the same site. Hydrothermal vent fauna colonized every artificial aggregation, and both epifaunal density and species richness were highest in areas of high chemosynthetic primary production. The species richness was also similar between natural aggregations of R. pachyptila and artificial aggregations in intermediate‐ and high‐productivity zones, suggesting that complex physical structure alone can support local species diversity in areas of chemosynthetic primary production. Differences in the community composition between natural and artificial aggregations reflect the variability in microhabitat conditions and biological interactions associated with hydrothermal fluid flux at low‐temperature hydrothermal vents. Moreover, these local ecological factors may further contribute to the maintenance of regional species diversity in hydrothermal vent communities on the East Pacific Rise.  相似文献   

6.
7.
Near the Azores Triple Junction as the Azores Plateau is approached, the ridge axis becomes shallower; its depth decreases from ca. 2400 m in the Rainbow vent field (36°13′N) to ca. 850 m in the Menez Gwen vent field (37°35′N). In this area, extensive mussel beds of the mytilid Bathymodiolus azoricus dominate the hydrothermal vent fauna, along with populations of three shrimps (Rimicaris exoculata, Mirocaris fortunata and Chorocaris chacei). The main physical and chemical characteristics of the vent habitat were studied by discrete sampling, in situ analysis and sediment trap moorings. The vent fauna is distributed along a variable band where the vent fluids and seawater mix, with R. exoculata living in the most concentrated areas and Bathymodiolus azoricus in the most diluted zones. Various non-endemic species live at the border of the vent field. The variations observed in structure and composition of the communities along the depth gradient are most likely due to changes in vent fluid toxicity (metallic and sulphide content) and suspended mineral particles, which render the fluids harsher for species living there. The main faunal differences observed between Lucky Strike and Menez Gwen hydrothermal fields are due to an impoverishment in the hydrothermal endemic species and to the penetration of bathyal species. The comparison of the three studied vent fields suggests the existence of a succession of several biogeographic islands rather than a single province.  相似文献   

8.
The biology of Kick’em Jenny (KEJ) submarine volcano, part of the Lesser Antilles volcanic arc and located off the coast of Grenada in the Caribbean Sea, was studied during a cruise in 2003. Hydrothermal venting and an associated biological assemblage were discovered in the volcanic crater (∼250 m depth). Warm water with bubbling gas emanated through rock fissures and sediments. Shrimp (some of them swimming) were clustered at vents, while other individuals lay immobile on sediments. The shrimp fauna consisted of 3 mesopelagic species that had no prior record of benthic or vent association. We suggest that these midwater shrimp, from deeper water populations offshore, were trapped within the crater during their downward diel vertical migration. It is unknown whether they then succumbed to the hostile vent environment (immobile individuals) or whether they are potentially opportunistic vent residents (active individuals). Given the abundance of submarine arc volcanoes worldwide, this phenomenon suggests that volcanic arcs could be important interaction sites between oceanic midwater and vent communities.  相似文献   

9.
The Eiffel Tower edifice is situated in the Lucky Strike hydrothermal vent field at a mean depth of 1690 m on the Mid‐Atlantic Ridge (MAR). At this 11‐m‐high hydrothermal structure, different faunal assemblages, varying in visibly dominant species (mussels and shrimp), in mussel size and in density of mussel coverage, were sampled biologically and chemically. Temperature and sulphide (∑S) were measured on the different types of mussel‐based assemblages and on a shrimp‐dominated assemblage. Temperature was used as a proxy for calculating total concentrations of CH4. Based on the physico‐chemical measurements, two microhabitats were identified, corresponding to (i) a more variable habitat featuring the greatest fluctuations in environmental variables and (ii) a second, more stable, habitat. The highest temperature variability and the highest maximum recorded temperatures were found in the assemblages visibly inhabited by alvinocaridid shrimp and dense mussel beds of large Bathymodiolus azoricus, whereas the less variable habitats were inhabited by smaller‐sized mussels with increasing bare surface in between. Larger mussels appeared to consume more ∑S compared with smaller‐sized (<1 cm) individuals and thus had a greater influence on the local chemistry. In addition, the mussel size was shown to be significantly positively correlated to temperature and negatively to the richness of the associated macrofauna. The presence of microbial mats was not linked to specific environmental conditions, but had a negative effect on the presence and abundance of macro‐fauna, notably gastropods. Whereas some taxa or species are found in only one of the two microhabitats, others, such as polychaetes and Mirocaris shrimp, cross the different microhabitats. Temperature was proposed to be a more limiting factor in species distribution than ∑S.  相似文献   

10.
Seagrass beds have higher biomass, abundance, diversity and productivity of benthic organisms than unvegetated sediments. However, to date most studies have analysed only the macrofaunal component and ignored the abundant meiofauna present in seagrass meadows. This study was designed to test if meiobenthic communities, especially the free-living nematodes, differed between seagrass beds and unvegetated sediments. Sediment samples from beds of the eelgrass Zostera capricorni and nearby unvegetated sediments were collected in three estuaries along the coast of New South Wales, Australia. Results showed that sediments below the seagrass were finer, with a higher content of organic material and were less oxygenated than sediments without seagrass. Univariate measures of the fauna (i.e. abundance, diversity and taxa richness of total meiofauna and nematode assemblages) did not differ between vegetated and unvegetated sediments. However multivariate analysis of meiofaunal higher taxa showed significant differences between the two habitats, largely due to the presence and absence of certain taxa. Amphipods, tanaidacea, ostracods, hydrozoans and isopods occurred mainly in unvegetated sediments, while kinorhyncs, polychaetes, gastrotrichs and turbellarians were more abundant in vegetated sediments. Regarding the nematode assemblages, 32.4% of the species were restricted to Z. capricorni and 25% only occurred in unvegetated sediments, this suggests that each habitat is characterized by a particular suite of species. Epistrate feeding nematodes were more abundant in seagrass beds, and it is suggested that they graze on the microphytobenthos which accumulates underneath the seagrass. Most of the genera that characterized these estuarine unvegetated sediments are also commonly found on exposed sandy beaches. This may be explained by the fact that Australian estuaries have very little input of freshwater and experience marine conditions for most of the year. This study demonstrates that the seagrass and unvegetated sediments have discrete meiofaunal communities, with little overlap in species composition.  相似文献   

11.
Characteristic flora and fauna that are highly sensitive to disturbances colonize coastal detritic bottoms in the Mediterranean Sea. In the present study, a comparison of the assemblage composition and colonization by invasive macroalgae was made between two coastal detritic macrophyte assemblages, one dominated by rhodoliths (free-living non-geniculate Corallinales) and the other dominated by fleshy algae, in an area that has been exposed to important levels of anthropogenic disturbance, mainly pollution (including changed sedimentation regimes) in the recent past (bay of Marseilles, France). In comparison with less strongly impacted Mediterranean regions, the macrophyte assemblages in the bay of Marseilles were characteristic in terms of species identity and richness of coastal detritic macrophyte assemblages. However, extremely low species abundance (cover) was observed. As far as invasive species were concerned, Caulerpa racemosa var. cylindracea was only abundant in the rhodolith assemblage whereas the two invasive Rhodophyta Asparagopsis armata and Womersleyella setacea were mainly found in the fleshy algae assemblage. The seasonality observed in the Rhodolith assemblage seemed to be related to the development of C. racemosa var. cylindracea and did not follow the typical pattern of other Mediterranean assemblages. This study represents the first study of coastal detritic assemblages invaded by C. racemosa var. cylindracea.  相似文献   

12.
Larval dispersal is critical for the maintenance of species populations in patchy and ephemeral hydrothermal vent habitats. On fast‐spreading ridges, such as the East Pacific Rise, rates of habitat turnover are comparable to estimated lifespans of many of the inhabiting species. Traditionally, dispersal questions have been addressed with two very different approaches, larval studies and population genetics. Population genetic studies of vent‐endemic species have been informative for determining whether patterns of dispersal are suggestive of stepping stone or island models and estimating rates of gene flow (effective migrants per generation) over broad geographic ranges. However, these studies leave fundamental questions unanswered about the specific mechanisms by which larvae disperse and species maintain their populations and biogeographic ranges. With the goal of examining genetic structure and elucidating alternative larval dispersal mechanisms, we employed a genomic DNA fingerprinting technique, amplified fragment length polymorphisms (AFLPs). To assess the potential utility of AFLPs, and genetic structure of the hydrothermal vent tubeworm Riftia pachyptila, genomic ‘fingerprints’ were recovered from 29 individuals from five vent fields spanning a distance of up to c. 5000 km along the East Pacific Rise. In contrast to previous population genetic studies that found little to no genetic structure using allozymes and mitochondrial DNA, genetic analyses of 630 polymorphic AFLP loci identified distinct subclades within R. pachyptila populations. Significant levels of differentiation were observed among populations from all vent regions as well as within each region. Discrete assemblages of tubeworms separated by as little as c. 400 m within a given vent region were genetically distinguishable and cohorts (based on size‐frequency distribution) within an aggregation were found to be most closely related. These results suggest that mechanisms of larval dispersal act to retain cohort fidelity in R. pachyptila.  相似文献   

13.
The spread of the invasive alga Caulerpa racemosa var. cylindracea in shallow-water habitats can present different faunal assemblage composition. We compared the amphipod assemblages associated with C. racemosa and natural habitats found on shallow-water Mediterranean soft substrata. Four vegetated habitats were compared: C. racemosa, Caulerpa prolifera, Cymodocea nodosa and Posidonia oceanica with unvegetated substrata. Samples were collected during two sampling periods (September 2004 and March 2005). A total of 63 amphipod species were recorded. The results showed that the vegetated habitats sampled, including C. racemosa stands, supported a higher abundance and species richness of amphipods. Furthermore, the assemblage structure differed between the different habitats, while the abundance of some species was significantly different, depending on habitat. For example, Microdeutopus obtusatus was favoured by C. racemosa habitat; Ampelisca diadema was associated with C. prolifera beds; and Hyale schmidti was more abundant in P. oceanica meadows. Habitat invasion by C. racemosa can exert an important influence on biotic assemblages, modifying habitat structure and associated fauna.  相似文献   

14.
Hydrothermal vent sulfide edifices contain some of the most extreme thermal and chemical conditions in which animals are able to live. As a result, sulfide edifices in the East Pacific Rise, Juan de Fuca Ridge, and Mid Atlantic Ridge vent systems often contain distinct faunal assemblages. In this study, we used high-resolution imagery and in-situ physico-chemical measurements within the context of a Geographic Information System (GIS) to examine community structure and niche differentiation of dominant fauna on sulfide edifices in the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Western Pacific Ocean. Our results show that ELSC and VFR sulfide edifices host two distinct types of communities. One type, that covers the majority of sulfide edifice faces, is overall very similar to nearby lava communities and biomass is dominated by the same chemoautotrophic symbiont-containing molluscs that dominate lava communities, namely the provannid gastropods Alviniconcha spp. and Ifremeria nautilei and the mytilid bivalve Bathymodiolus brevior. The spatial distribution of the dominant molluscs is often a variation of the pattern of concentric rings observed on lavas, with Alviniconcha spp. at the tops of edifices where exposure to vent flow is the highest, and I. nautilei and B. brevior below. Our physico-chemical measurements indicate that because of rapid dispersion of vent fluid, habitable area for symbiont-containing fauna is quite limited on sulfide edifices, and the realized niches of the mollusc groups are narrower on sulfide edifices than on lavas. We suggest that competition plays an important role in determining the realized distributions of the mollusc groups on edifices. The other habitat, present in small patches of presumably hot, new anhydrite, is avoided by the dominant symbiont-containing molluscs and inhabited by crabs, shrimp and polynoids that are likely more heat tolerant. The ratio of sulfide concentration to temperature anomaly of vent fluids was significantly different between sulfide edifice sites and lava sites in the southern vent fields but not in the northern vent fields. We suggest that this is due to increased sulfide consumption by a large microbial consortium associated with the more friable andesitic lava substrates in the south.  相似文献   

15.
Analysis of living (Rose Bengal-stained) benthic foraminifera in 13 multicorer samples taken along the Cap Breton canyon (Bay of Biscay) revealed that the combination of organic-rich material and sediment instability provides very specific benthic ecosystem conditions. The active canyon hosts different foraminiferal assemblages that appear to be determined by different types and frequencies of environmental disturbance at the sites. Most of them are strongly dominated by shallow-infaunal living taxa that combine a tolerance for low-quality organic matter with a high reproductive potential. Foraminiferal assemblages characterized by high densities, very superficially living taxa and strong dominance of bolivinids and buliminids, follow a poor pioneer fauna dominated by Technitella melo. These assemblages are observed in the narrow canyon axis, where frequent sediment resuspension occurs and affects habitat stability. Assemblages studied from sites outside the canyon axis are still dominated by shallow-infaunal species but show lower foraminiferal densities and higher diversities. Deep-infaunal taxa are only present in some inner meanders and more distal stations. These assemblages are typical for ecological niches that are relatively stable and unaffected by re-sedimentation processes. They have attained a more advanced stage of ecosystem stability. They are influenced by neither lateral sediment nor enriched organic matter input.  相似文献   

16.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

17.
Benthic organisms are among the most diverse and abundant in the marine realm, and some species are a key factor in studies related to bioengineering. However, their importance has not been well noted in biogeographic studies. Macrofaunal assemblages associated with subtidal beds of the ribbed mussel (Aulacomya atra) along South America were studied to assess the relationship between their diversity patterns and the proposed biogeographic provinces in the Southeastern Pacific and Southwestern Atlantic Oceans. Samples from ribbed mussel beds were obtained from 10 sites distributed from the Peruvian coast (17°S) to the Argentinean coast (41°S). The sampling included eight beds in the Pacific and two in the Atlantic and the collections were carried out using five 0.04 m2 quadrants per site. Faunal assemblages were assessed through classification analyses using binary and log‐transformed abundance data. Variation in the size and density of mussels, and in the species richness, abundance and structure of their faunal assemblages were tested using a permutational multivariate analysis of variance. Faunal assemblages showed a north–south latitudinal gradient along both the Pacific and Atlantic coasts. Binary and abundance data showed a difference in the resulting clustering arrangement of Pacific sites between 40°S and 44°S, indicating a pattern of continuity in the species distribution associated with biological substrates. At a regional scale, the distribution of species along the South American coast matched the general provincial pattern shown by prior studies, which show two biogeographic units on the Pacific coast separated by an intermediate (probably transitional) zone and a single province on the Atlantic coast extending up to Northern Argentina. Biological substrates such as ribbed mussel beds play an important ecological role by making a similar habitat type available on a large scale for a variety of invertebrate species. Despite such habitat homogeneity, however, the associated fauna exhibit marked distribution breaks, suggesting strong constraints on dispersal. This therefore suggests that macrofaunal assemblages could possibly be used as biogeographic indicators.  相似文献   

18.
The distribution of phytoplankton and its correlation with environmental factors were studied monthly during August 2012 to July 2013 in the Yantian Bay. A total of 147 taxa of phytoplankton were identified, and the average abundance was in the range of 0.57×10~4 to 7.73×10~4 cell/L. A total of 19 species dominated the phytoplankton assemblages, and several species that are widely reported to be responsible for microalgae blooms were the absolutely dominant species, such as Skeletonema costatum, Navicula sp., Thalassionema nitzschioides,Pleurosigma sp., and Licmophora abbreviata. The monthly variabilities in phytoplankton abundance could be explained by water temperature, dissolved oxygen, salinity, dissolved inorganic nitrogen(DIN), and suspended solids. The results of a redundancy analysis showed that p H and nutrients, including DIN and silicate(SiO_4), were the most important environmental factors controlling phytoplankton assemblages in specific months. It was found that nutrients and pH levels that were mainly influenced by mariculture played a vital role in influencing the variation of phytoplankton assemblages in the Yantian Bay. Thus, a reduction of mariculture activities would be an effective way to control microalgae blooms in an enclosed and intensively eutrophic bay.  相似文献   

19.
During the SoJaBio expedition, the deep sea fauna of the north-western Sea of Japan was sampled in August–September 2010. From this study, 11 epibenthic sledge stations are analyzed, with a focus on species composition, diversity and distribution patterns of polychaetes. A total of 92 polychaete taxa belonging to 70 genera and 28 families and 3 indeterminate species were found. Twelve species and eight genera have not been reported from the Sea of Japan before, but were registered from other deep-sea basins. Calculation of diversity (Shannon–Wiener Index, Pielou's Evenness) showed that the upper bathyal of the Sea of Japan is an area of higher polychaete diversity than the abyssal plain. The increased richness and diversity here could possibly be explained by a zoogeographic overlapping with the shallower species' assemblages of the shelf. At a higher taxonomic level the polychaete fauna of the deep Sea of Japan does not seem to differ from that of other deep-sea regions world-wide. In depths below 2000 m about 30% polychaete species have wide distributional ranges.  相似文献   

20.
The structure of the assemblages associated with the mussel aggregations of Bathymodiolus azoricus was investigated. The mussel beds were found on the hydrothermal vent fields on the Mid-Atlantic Ridge (the Menez Gwen, Lucky Strike, and Rainbow areas) at the depths of 850–2400 m. The community structure of the mussel bed assemblages varied between the studied areas. Large number of species was unique to Menez Gwen mussel beds; the most observed taxa were not specialized hydrothermal species. All the other, nonunique species were found for the Lucky Strike region. The lowest mussel assemblage structure evenness was observed in the shallowest area, the Menez Gwen area (850 m depth). We assume that two types of mussel assemblages—nematode-dominated and copepod-dominated ones—exist in the Lucky Strike field. The assemblages of B. azoricus differ significantly from the assemblages of B. thermophilus inhabiting the Pacific hydrothermal vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号