首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain‐size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root‐mean‐square error of up to 28%, depending upon settling velocity model and grain‐size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity‐dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root‐mean‐square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand‐sized bioclastic sediments from sieve, laser diffraction, or image analysis‐derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain‐size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.  相似文献   

2.
Bioclastic particles derived from mollusc shell debris can represent a significant fraction of sandy to gravelly sediments in temperate and cool‐water regions with high carbonate productivity. Their reworking and subsequent transport and deposition by waves and currents is highly dependent on the shape and density of the particles. In this study, the hydrodynamic behaviour of shell debris produced by eight mollusc species is investigated for several grain sizes in terms of settling velocity (measurements in a settling tube) and threshold of motion under unidirectional current (flume experiments using an acoustic profiler). Consistent interspecific differences in settling velocity and critical bed shear stress are found, related to differences in shell density, shell structure imaged by scanning electron microscopy and grain shape. Drag coefficients are proposed for each mollusc species, based on an interpolation of settling velocity data. Depending on the shell species, the critical bed shear stress values obtained for bioclastic particles fall within or slightly below empirical envelopes established for siliciclastic particles, despite very low settling velocity values. The results suggest that settling velocity, often used to describe the entrainment of sediment particles through the equivalent diameter, is not a suitable parameter to predict the initiation of motion of shell debris. The influence of the flat shape of bioclastic particles on the initiation of motion under oscillatory flows and during bedload and saltation transport is yet to be elucidated.  相似文献   

3.
Sediment trapping and transport in the ACE Basin,South Carolina   总被引:1,自引:0,他引:1  
A study took place during May 1998 and May 1999 to examine the processes controlling localized accumulation of fine-grained sediments in the lower Ashepoo River. This region, referred to as the Mud Reach, is an area of muddy bottom sediments bounded by fine sands. The Mud Reach is located downstream of the landward extent of the salt intrusion where an estuarine turbidity maximum commonly occurs. Tidal time-series measurements made in the Mud Reach during May 1998, when river discharge was at a 10-yr high, showed high concentrations of suspended sediment (0.05–1 g I−1) during maximum tidal current velocity with concentrations in the bottom 30 cm exceeding 70 g I−1 (fluid mud). A correlation between salinity stratification and increased suspended sediment concentration suggests that inhibited vertical mixing enhances the settling of flocculated sediments to the bed. Measurements made during May 1999 show a two-order-of-magnitude decrease in the concentration of near-bed sediments. A decrease in river discharge during the 1999 observation period of more than 100 m3 s−1 suggests that changes in the hydrography and in the supply of sediments to the system both may be important factors in the trapping of fine-grained sediments in the region. The source of sediments is likely from muddy deposits in the Fenwick Cut, a man-made section of the Atlantic Intracoastal Waterway about 2 km north of the Mud Reach that connects the Ashepoo and Edisto Rivers. The Fenwick Cut appears to be an effective area for trapping sediments where shoaling has increased by 130% in the last decade. Current measurements show that flow velocities decrease through the Cut, likely allowing for the settling of suspended particles that form the thick deposits of unconsolidated mud observed during both years.  相似文献   

4.
Entrainment of planktonic foraminifera: effect of bulk density   总被引:1,自引:0,他引:1  
Depositional hydrodynamics have been studied using settling rate distributions of Norwegian deep sea sediments (between Jan Mayen Island and the Vøring Plateau), together with Shields’ critical shear stress velocities. Planktonic foraminifera are the dominant sand sized component of these sediments. The bulk density of the foraminifera was calculated from their settling velocity, sieve size and shape. Density decreases from 2·39 g cm?3 at 0·05 mm diameter to 1·37 g cm?3 at 0·35 mm diameter. These density and size data were used to construct a threshold sediment movement curve. From the similarity in their Shield's critical shear-stress velocities and the observed correlation of foraminifera size with decreasing percentage of fine fraction, it is concluded that the two components, the sand size foraminifera and the quartz and carbonate silt, are transport-equivalent.  相似文献   

5.
Processes governing the formation of rare earth elements (REE) composition are considered for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different fractions) within the Clarion–Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity, the size of micronodules has a positive correlation with the Mn content and Mn/Fe and P/Fe ratios and a negative correlation with Fe, P, REE, and Ce anomaly. The behavior of REE in micronodules from sediments within bioproductive zones is related to increase of the influence of diagenetic processes in sediments as a response to the growth of the size of micronodules. Distinctions in the chemical composition of micronodules and nodules are related to their interrelations with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in the labile fraction of sediments reworked during diagenesis. Sources of the material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from the bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to the sorption of phosphate-ion from bottom and pore waters. The sorption of phosphate-ion results in an additional sorption of REE.  相似文献   

6.
A sedimentological study of Quaternary sediments from the northwestern part of the Barents Sea shows that their composition is controlled by the underlying Mesozoic bedrock and that very little sediment has been supplied from outside sources. The Quaternary sediments consist of Pleistocene glacial clays (moraines) and Holocene gravel, sand and mud, derived by erosion of the clay-rich moraines, which again have been derived from underlying Mesozoic rocks. On the shallow Spitsbergen Bank (30-100 m depth) we find a high energy facies of bioclastic carbonate sand and gravel and lag deposits of Mesozoic rock fragments from the underlying moraine. 14C-datings of the bioclastic carbonates (Molluscs and Barnacles) suggest that soft bottom conditions with Mya truncata prevailed in early Holocene time, succeeded by a hard bottom high energy environment with Barnacles in the last 2000-3000 years. This may be due to a southward movement of the oceanic polar front into the Spitsbergen Bank due to colder climate in Late Holocene (subatlantic) time, which at present day produces strong bottom currents down to 100 m depth. On the Spitsbergen Bank carbonate sedimentation has succeeded glacial sedimentation as a result of withdrawal of clastic sediment supply in Holocene time and high organic productivity because of upwelling. A similar mechanism may have been operating during earlier glaciations, i.e. in Late Precambrian time to produce an association of glacial and carbonate sediments although the biological precipitation was different at that time. In Late Precambrian time precipitation or carbonate by algaes may have occurred in colder water on the shelves due to higher saturation of carbonate in the sea water.  相似文献   

7.
Conventional biomarker studies typically interpret the distribution, structure and stable isotopic (e.g. 13C, D) composition of sedimentary hydrocarbons and polar compounds. However, compound and compound class specific 14C analysis (CSRA) is becoming increasingly relevant for characterising millennial scale residence and mobilisation of sedimentary organic carbon (OC). Here, the 14C content of the aliphatic and bulk fractions from shallow cores from the hypersaline playa, Lake Tyrrell, southeast Australia were compared. The aliphatic hydrocarbon fractions (predominantly n-alkanes) were substantially older than the corresponding bulk fractions, indicating the presence of active reservoirs of ancient carbon, likely derived from aeolian reworking of sediments. The 14C ages of the aliphatic hydrocarbons in the core revealed two noticeable shifts in age and source of ancient OC that were not apparent using biomarker composition and sedimentology alone. The study shows that aliphatic hydrocarbons are relatively simple to isolate, even from organically lean (ca. 0.05% TOC) terrestrial sediments, and their 14C ages yield information about carbon mobilisation and preservation not amenable to conventional analysis.  相似文献   

8.
Tracing sources of aeolian sediment is key to reconstructing earth surface processes in arid areas and interpreting the paleoenvironmental significance of aeolian sequences. However, the difference of geochemical characteristics between different fractions of sediments in the Yarlung Zangbo River Basin (YZRB) is still unclear, so we want to identify which fraction of sediments is more suitable for tracing sediment sources. Considering the long distance between different wide valleys in the YZRB, we wonder whether there is any difference between these wide valleys in terms of geochemical characteristics of sediments. Forty-three surface sediment samples in the YZRB are collected, and the grain-size distributions and the major-element composition for 37 samples and the trace and rare earth element composition for the coarse (75–500 μm) and fine (<?75 μm) fractions of all samples are determined. The results reveal the following: (1) the fine fractions of the deposits contain more environmental information, suggesting that the fine fractions cannot be directly compared between different climate zones for provenance identification and that appropriate coarse fractions, based on the grain-size distribution of the targeted sediments, are more ideal for tracing sediment sources; and (2) geochemical characteristics of various sediment types show spatial heterogeneity. The coarse and fine fractions of the loose sediment samples can be divided into two regional groups based on geochemical characteristics: the Maquanhe zone in the upper reach, the Xigaze, Shannan and Mainling zone in the middle reach, which is consistent with the geological background of the YZRB; (3) aeolian deposits in the YZRB are a local origin and predominantly derived from the adjacent loose sediments, and fluvial sediments in the upper reach contribute little to the aeolian sands in the middle reach.  相似文献   

9.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

10.
The Mahoning River is one of the five most contaminated rivers in the U.S. This study characterized the contaminated sediments in the river banks and investigated the hydraulic interconnection between shallow aquifer in the banks with the river water. The study was conducted along the most polluted section of the river, which is 50-km long, using over 50 monitoring wells. The characterization part of the study investigated the sedimentology, hydraulic conductivity, and spatial distribution of the contaminated sediments. Results of the characterization revealed that the contaminated sediments consist of fine-grained sand, silt, mud, and clay. The spatial distribution of the contaminated sediment is heterogeneous and positively correlates with the hydraulic conductivity values, i.e., the greatest contamination occurs in high conductivity areas. Hydraulic conductivity was determined by the Hazen formula using 82 sediment samples. Bioremediation, which is one of the remedial options considered for the banks, is found to be hydraulically feasible because of sufficient hydraulic conductivity values (≥10?4 cm/s) that ensure reasonable rates of nutrient delivery. Monitoring of water levels in the river and groundwater for a 10-month period shows that flow occurs from the river to groundwater and vice versa. The exchange of flow is influenced by rainfall. Flow of groundwater to the river will continually transport the dissolved contaminants in groundwater to the river. Therefore, findings of this study show that one of the remedial options that proposes dredging of channel sediments and permits no action for bank sediments cannot be chosen due to river water–groundwater interactions.  相似文献   

11.
Elutriation from a fluidized bed provides an accurate, economical, direct method of sediment grading by terminal velocity. This is of particular value in studying populations of irregular particles in the range medium sand to granule (e.g. carbonate sands). A column suitable for such material (terminal settling velocity 1-30 cm s?1) is described and sample results from Connemara Lithothamnion beach material are given.  相似文献   

12.
13.
Sections of a 42 cm core from one area and surface sediments from two other areas of Buzzards Bay, Massachusetts were analyzed for sterols. The distribution of sterols in surface sediments appears to be influenced by benthic faunal composition or factors controlling this composition. A comparison of sterols extracted by Soxhlet-extraction with sterols extracted after subsequent saponification of the sediment showed that the former sterols decrease in concentration while the latter saponified sterols increase in concentration with depth. In both fractions, the individual sterol compositions are similar. A transformation between Soxhlet-extractable and non-Soxhlet-extractable saponified sterols appears to be occurring over the 130 yrs sampled by the core. This transformation is probably due to chemical/physical processes rather than biological processes. Comparison with fatty acid data shows that early diagenesis of sterols is slower than early diagenesis of fatty acids.  相似文献   

14.
Sediment accumulation rates were estimated from-the vertical distribution of excess Pb-210 measured in sediment cores collected at seven stations in the Saguenay Fjord, Quebec. These rates decrease with increasing water depth and distance from the mouth of the Saguenay River, ranging from 4.0 g cm?2 yr?1 (~- 7 cm yr?1) near the head of the fjord to 0.07 g cm?2 yr?1 (~- 0.1 cm yr?1) in the deep inner basin of the fjord. In one core from the head of the fjord, layered sediment structures, having different physical characteristics and composition, appear related to recent, pulsed inputs of older raised marine deposits displaced by a landslide in 1971. Synchronous depositional anomalies in several cores provide evidence of other large scale sediment redistribution processes in the fjord. Pb-210 geochronologies are generally in good agreement with time-stratigraphic horizons inferred both from Cs-137 activity profiles and from the analysis of pollen assemblages in one core.  相似文献   

15.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   

16.
Settling velocity of bioclastic particles in coastal and shallow marine environments is essential for interpreting depositional facies and processes. There is, however, a paucity of accurate formulae for predicting the settling velocities and drag coefficients of platy biogenic particles in particular. This study provides experimental settling data based on 320 platy shell fragments from a sediment core recovered in Li'an Lagoon, south-eastern Hainan Island, China. The results indicate that the settling velocities of platy shell fragments are strongly correlated with nominal diameters and Corey shape factors (ranging from 0.02 to 0.20 in this study). On this basis, a practical equation of acceptable accuracy was established for platy particles, relating dimensionless settling velocities to dimensionless diameters and Corey shape factors. Similarly, another empirical formula for quickly calculating the equivalent diameter of platy shell fragments in practice was proposed as well. Regarding the strong dependence of the drag coefficients using equivalent spherical diameters to Corey shape factors, the drag coefficient based on the diameter of the equivalent maximum projected area remains almost constant and is hence physically well-suited for the definition of grain drag coefficients. The settling data of this study has extended the lower Corey shape factors limit of bioclastic particles, and the equations presented here can be used for quantitative interpretations of sedimentary records, modelling of depositional processes and investigations of other platy particles.  相似文献   

17.
The vertical distribution and feeding type of nematodes in sediments of Chetumal Bay, Mexico, were studied in five intertidal transects along the urbanized zone in June and December 1995. Sediments were collected with a PVC corer to 6-cm sediment depth and cut immediately into three equal 2-cm depth fractions. Nematode density varied from 7.4 × 103 to 5.3 × 105 m?2 in June and from 1.7 × 104 to 7.2 × 105 m?2 in December. In June, the epistrate feederPseudochromadora sp. was the most abundant in the deepest sediment fraction (4–6 cm), whereas epistrate feeders,Neotonchoides sp.,Desmodora sp., and the deposit feederBathylaimus australis were dominant in the top most sediment (0–2 cm). In December, deposit feeders,Desmolaimus zeelandicus, Parodontophora sp., and the epistrate feederOncholaimus oxyuris were the most abundant in the deepest sediment, whereasNeotonchoides sp. andPseudochromadora sp. dominated the first 2 cm of sediments. Highest nematode density was recorded in the uppermost sediment layer (0–2 cm). Feeding types showed different abundance among transects and between months. There was a seasonal change in vertical distribution of nematodes, with the highest abundance in the deepest sediment layer in December, possibly due to the effect of wind waves on sediments of Chetumal Bay. The trophic composition of the nematode fauna in Chetumal Bay showed a dominance of deposit feeders and epistrate feeders, most likely in response to organic enrichment that is typical of eutrophic environments.  相似文献   

18.
The viscous behaviour of laterite slurries was characterized by measurements of shear stress at constant and changing shear rates. Steady state stresses were obtained after accounting for the settling solids: the values show that the fluids possess viscosities of order 100 mPa s and are moderately shear-thinning, for solid volume fractions from 0.06 to 0.18 and for shear rates between 10 and 1000 s−1. Transient stress measurements were made for steps down in shear rate and for ramps down and up in shear rate. It was found that the Bingham–Maxwell model provides good fits to the transient data, both at low concentrations, where yield behaviour is dominant, and at high concentrations, where elasticity is dominant. For volume fractions of 0.10 or greater, relaxation times were found from step tests to be of order 10 s, but relaxation times found from the ramp tests were generally several times higher.  相似文献   

19.
The threshold of motion of non-fragmented mollusc shells was studied for the first time under oscillatory flow. In this regard, flume experiments were used to investigate the threshold of motion of three bivalve and three gastropod species, two typical mollusc classes of coastal coquina deposits. The sieve diameters ranged from 2·0 to 15·9 mm. These experiments were performed on a flat-bottom setup under regular non-breaking waves (swell) produced by a flap-type wave generator. The critical Shields values for each species of mollusc were plotted against the sieve and nominal diameter. Moreover, the dimensionless Corey shape factor of the shells was evaluated in order to investigate the effect of mollusc shell shapes on the threshold of motion. According to their critical Shields parameter, the mollusc threshold data under oscillatory flow present smaller values than the siliciclastic sediments when considering their sieve diameter. In addition, the mollusc datasets are below the empirical curves built from siliciclastic grain data under current and waves. When considering the nominal diameter, the critical Shields parameter increases and the mollusc data are closer to siliciclastic sediments. Bivalves, which have a flat-concave shape (form factor: 0·27 to 0·37), have a higher critical Shields parameter for smaller particles and more uniform datasets than the gastropod scattered data, which have a rounded shape (form factor: 0·58 to 0·62) and have varied morphologies (ellipsoidal, conical and cubic). The comparison between previous current-driven threshold data of bioclastic sediment motion and the data of mollusc whole shells under oscillatory flow shows a fair correlation on the Shields diagram, in which all datasets are below the mean empirical curves for siliciclastic sediments. These findings indicate that the shape effect on the transport initiation is predominant for smaller shells. The use of the nominal diameter is satisfactory to improve the bioclastic and siliciclastic data correlation.  相似文献   

20.
The sedimentology, mineralogy and pore fluid chemistry of seven cores from the Holocene sediments of Florida Bay were studied to determine the physical processes and diagenetic reactions affecting the sediments. The cores were taken in a transect from a shallow mudbank onto a small adjacent island, Jimmy Key. Steady state models of pore fluid chemistry are used to estimate the rates of various reactions. In the mudbank sediments, little carbonate mineral diagenesis is taking place. No change in sediment mineralogy is detectable and pore water profiles of Ca2+, Mg2+ and Sr2+ show only minor variation. Chloride concentrations indicate substantial biological mixing of seawater from the bay into the sediments in one of the cores. Pore water analyses of sulphate and alkalinity show only a low degree of sulphate depletion and a decreasing extent of sulphate reduction downcore. Models of sulphate reduction in the mudbank show that there is substantial chemical exchange between the sediment pore fluids and water from the bay probably as a result of bio-irrigation. The sulphate and alkalinity data also suggest that the underlying Pleistocene rocks contain water of near normal seawater composition. Stratigraphic analysis and δ13C analyses of the organic carbon in the sediments of the island cores show that the sediments were primarily deposited in a subtidal mudbank setting; only the upper 20–30 cm is supratidal in origin. Nevertheless, island formation had a significant effect on pore fluid chemistry and the types of diagenetic reactions throughout the sediment column. Chloride in the sediment pore fluids is more than twice the normal seawater concentrations over most of the depth of the cores. The constant, elevated chloride concentrations indicate that hypersaline fluids which formed in ponds on the island are advected downward through the sediments. Models of the chloride profiles yield an estimate of 2·5 cm yr?1 as a minimum advective velocity. Changes in pore water chemistry with depth are interpreted as indicating the following sequence of reactions: (1) minor high-Mg calcite dissolution and low-Mg calcite precipitation, from 0 to 35 cm; (2) Ca- or Mg-sulphate dissolution and low-Mg calcite precipitation, from 5 to 35 cm; (3) dolomite or magnesite precipitation together with sulphate reduction, from 35 to 55 cm; and (4) little reaction below 55 cm. In addition, one or more as yet unidentified reactions must be taking place from 5 to 55 cm depth as an imbalance in possible sources and sinks of alkalinity is observed. The imbalance could be explained if chloride is not completely conservative. Despite the pore fluid chemical evidence for diagenetic reactions involving carbonate minerals, no changes in sediment mineralogy were detected in X-ray diffraction analyses, probably because of the comparatively young age of the island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号