首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

2.
The giant Jianchaling gold deposit is located in the Shaanxi Province, China. The mineralization is hosted by WNW-trending faults in the Mianxian-Lueyang-Yangpingguan (MLY) area. The mineralization can be divided into three stages based on mineralogical assemblages and crosscutting relationships of mineralized quartz veins. These stages, from early to late, are characterized by the mineral assemblage of: (1) quartz – coarse-grained pyrite – pyrrhotite – pentlandite – dolomite; (2) quartz – pyrite – gold – sphalerite – galena – carbonate – arsenopyrite – fuchsite; and (3) dolomite – calcite – quartz – fine-grained pyrite – realgar – orpiment.Three types of fluid inclusions have been recognized in this study based on petrographic and microthermometric measurements, including pure CO2 and/or CH4 (PC-type), NaCl-H2O (W-type), and NaCl-CO2-H2O (C-type) fluid inclusions. These fluid inclusion types are present in quartz from the Stage 1 and 2 assemblages, whereas the Stage 3 quartz only contains W-type fluid inclusions. The Stage 2 assemblage is associated with the mineralization at the Jianchaling deposit. Fluid inclusions of Stage 1 quartz homogenize mainly between 250° and 360 °C, with salinities up to 15.6 wt.% NaCl equiv., whereas the Stage 3 dolomite with homogenization temperatures of 160° – 220 °C and salinities of 1.1–7.4 wt.% NaCl equiv. This indicates that the ore fluid system evolved from CO2-rich, probably metamorphic hydrothermal to CO2-poor, meteoric fluid. All three types of fluid inclusions can be observed in the Stage 2 quartz, suggesting that this heterogeneous association was trapped from a boiling fluid system. These inclusions homogenized at temperatures of 200°–250 °C and salinities of 1.2–12.4 wt.% NaCl equiv. The estimated trapping pressures of the fluid inclusions are between 117 and 354 MPa in Stage 1, suggesting an alternating lithostatic–hydrostatic fluid system, which was controlled by a fault-valve at the depth of ~ 12 km.Two fuchsite samples collected from the Stage 2 polymetallic-quartz veins yielded well-defined 40Ar/39Ar isotopic plateau ages of 197 ± 2 and 194 ± 2 Ma, and 39Ar/36Ar-40Ar/36Ar normal isochrones of 198 ± 2 and 199 ± 2 Ma. This indicates that the mineralization at Jianchaling is Early Jurassic (ca. 198 Ma) in age. We propose that Jianchaling is an orogenic gold deposit, and formed during continental collision related to the northward subduction of the Mian-Lue oceanic plate during the Early Jurassic. We also conclude that the beginning of the continental collision between the Yangtze and the North China Cratons took place around 200 Ma.  相似文献   

3.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

4.
Following ultrahigh temperature granulite metamorphism at ∼1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02–1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (∼0.92–0.95 g/cc) and low density (∼0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (∼8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00–10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during granulite metamorphism.  相似文献   

5.
The Wenyu giant gold deposit is hosted in the Precambrian Taihua Supergroup metamorphic rocks within the Xiaoqinling terrane (Qinling Orogen), on the southern margin of the North China Craton. The mineralization can be divided into three stages: quartz–pyrite veins early, quartz–sulfide veins middle (main), and carbonate–quartz veinlets late, with gold being mainly introduced in main stage. Quartz formed in two earlier stages contains three compositional types of fluid inclusions, i.e. pure CO2, CO2–H2O and NaCl–H2O, but the late-stage minerals only contain the NaCl–H2O inclusions. The inclusions in quartz formed in the early, main and late stages yield total homogenization temperatures of 262–417 °C, 236–407 °C and 114–239 °C, respectively, with salinities no higher than 13 wt.% NaCl equiv. Trapping pressures estimated from CO2–H2O inclusions are 139–399 MPa and 111–316 MPa in the early and main stages, corresponding to mineralization depths of 14 km and 11 km, respectively. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Wenyu gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic–Early Cretaceous continental collision between the North China and Yangtze Cratons.  相似文献   

6.
The Upper Paleozoic section contains a tight gas sandstone reservoir (of 2.75 × 1012 m3) in the Ordos Basin, central China. The measured porosities (< 10%) and permeabilities (generally < 1 mD) are the result of significant mechanical and chemical compaction and precipitation of carbonate, quartz and authigenic clay cements. Fluid inclusion geochemistry and kinetic modeling (generation of gaseous components and δ13C1) were integrated to constrain the timing of gas charge into the tight reservoir. The modeling results indicate that the natural gases in the present reservoir are similar to gases liberated from quartz inclusions in both composition and stable carbon isotope values and also similar to gas generated from Upper Paleozoic coal. The similar geochemistry suggests that an important phase of quartz cementation must have occurred after gas emplacement in the reservoirs during regional uplift at the end of the Cretaceous. The latest carbonate cement, postdating quartz cementation, consumed most of the late CO2 generated from coal at high maturity (RO > 1.7%) and reduced the reservoir quality dramatically. On the contrary, tight sandstones from non-producing areas have fluid inclusions that were trapped in quartz cements much earlier. These data indicate that natural gas migrated into the Upper Paleozoic reservoir when it still retained high porosity and permeability. The reservoir continued to experience porosity and permeability reduction from continued quartz and carbonate cementation after gas charging due to low gas saturation. Comparison of the relative timing of gas charging with that of sandstone cementation can help to predict areas of risk during tight gas exploration and development.  相似文献   

7.
Kuh-e Mond Field is a conventional heavy oil resource in the Zagros foreland Basin, Iran, produced from the fractured carbonates partially filled by dolomite, calcite, and anhydrite cement. Vitrinite reflectance data from carbonate reservoir suggest low-maturation levels corresponding to paleotemperatures as low as 50 °C. The observed maturation level (< 0.5% Rmax) does not exceed values for simple burial maturation based on the estimated burial history. Oil inclusions within fracture-filled calcite and dolomite cement indicate the key role of these fractures in oil migration.The fluid inclusion temperature profiles constructed from the available data revealed the occurrence of petroleum in dolomite, calcite, and anhydrite and characterize the distinct variations in the homogenization temperatures (Th). Fluid inclusions in syntectonic calcite veins homogenize between 22 °C and 90 °C, showing a salinity decrease from 22 to 18 eq. wt.% NaCl. Fluid inclusions in anhydrite homogenize at < 50 °C, showing that the pore fluids became warmer and more saline during burial. The Th range in the calcite-dolomite cement depicts a change in water composition; therefore, we infer these cements precipitated from petroleum-derived fluids. The microthermometry data on the petroleum fluid inclusions suggest that the reservoir was filled with heavy black oils and high-salinity waters and indicate that undersaturated oil was present in a hydrostatically pressured reservoir.The Th data do not support vertical migration of hot fluids througout the section, but extensive lateral fluid migration, most likely, drove tectonically dewatering in the south or west of the pool.  相似文献   

8.
The Shilu deposit is a world-class Fe–Co–Cu orebody located in the Changjiang area of the western part of Hainan Island, South China. The distribution of Fe, Co, and Cu orebodies is controlled by strata of the No. 6 Formation in the Shilu Group and the Beiyi synclinorium. Based on a petrological study of the host rocks and their alteration assemblages, and textural and structural features of the ores, four mineralization stages have been identified: (1) the sedimentary ore-forming period; (2) the metamorphic ore-forming period; (3) the hydrothermal mineralization comprising the skarn and quartz–sulfide stage; and (4) the supergene period. The fluid inclusions in sedimentary quartz and/or chert indicate low temperatures (ca. 160 °C) and low salinities from 0.7 to 3.1 wt.% NaCleq, which corresponds to densities of 0.77 to 0.93 g/cm3. CO2-bearing or carbonic inclusions have been interpreted to result from regional metamorphism. Homogenization temperatures of fluid inclusions for the skarn stage have a wide range from 148 °C to 497 °C and the salinities of the fluid inclusions range from 1.2 to 22.3 wt.% NaCleq, which corresponds to densities from 0.56 to 0.94 g/cm3. Fluid inclusions of the quartz–sulfide stage yield homogenization temperatures of 151–356 °C and salinities from 0.9 to 8.1 wt.% NaCleq, which equates to fluid densities from 0.63 to 0.96 g/cm3.Sulfur isotopic compositions indicate that sulfur of the sedimentary anhydrite and Co-bearing pyrite, and the quartz–sulfide stage, was derived from seawater sulfate and thermochemical sulfate reduction of dissolved anhydrite at temperatures of 200 °C and 300 °C, respectively. H and O isotopic compositions of the skarn and quartz–sulfide stage demonstrate that the ore-forming fluids were largely derived from magmatic water, with minor inputs from metamorphic or meteoric water. The Shilu iron ore deposit has an exhalative sedimentary origin, but has been overprinted by regional deformation and metamorphism. The Shilu Co–Cu deposit has a hydrothermal origin and is temporally and genetically associated with Indosinian granitoid rocks.  相似文献   

9.
The Aerhada Pb-Zn-Ag deposit is located in the western segment of the Great Hinggan Range Ag-Pb-Zn-Cu-Mo-Au-Fe metallogenic belt in NE China. Orebodies occur mainly as vein type and are hosted by sandstone and siliceous slate. Three stages of primary mineralization, including an early arsenopyrite-pyrite-quartz, a middle polymetallic and silver sulfides-quartz and a late sphalerite-pyrite-calcite-fluorite are recognized. Four types of fluid inclusions have been identified in the ore-bearing quartz and fluorite veins, i.e., liquid-rich, gas-rich, three-phase CO2 aqueous inclusions, and pure gas or liquid aqueous inclusions. Microthermometric studies on fluid inclusions reveal that homogenization temperatures from early to late stages range from 253° to 430 °C, 195° to 394 °C and 133° to 207 °C, respectively. Fluid salinities range from 2.9 to 14.0 wt.% NaCl equiv. The vapor composition of the ore fluid is dominated by H2O, CO2 and CH4, with minor proportions of N2. The fluid δ18OH2O and δDH2O values vary from +1.6 to +9.3‰ and −122 to −56‰, respectively, and reflect a magmatic fluid and a meteoric fluid dominant hydrothermal system for the early and late stages of mineralization, respectively. The calculated δ34SH2S values of hydrothermal fluids in equilibrium with sulfides range from +5.2 to +7.1‰, suggesting a mixed source for sulfur, i.e., the local magmatic and sedimentary rocks. The Pb isotope compositions of sulfides are similar to those of the local magmatic and sedimentary rocks, implying that lead and possibly silver relate to these sources. The noble gas isotope compositions of fluid inclusions hosted in ore minerals suggest that the ore-forming fluids were dominantly derived from a deep mantle source. Fluid mixing and dilution are inferred as the dominant mechanisms for ore deposition. The Aerhada Pb-Zn-Ag deposit can be classified as a medium to low temperature hydrothermal vein type deposit.  相似文献   

10.
The Shapinggou porphyry Mo deposit, one of the largest Mo deposits in Asia, is located in the Dabie Orogen, Central China. Hydrothermal alteration and mineralization at Shapinggou can be divided into four stages, i.e., stage 1 ore-barren quartz veins with intense silicification, followed by stage 2 quartz-molybdenite veins associated with potassic alteration, stage 3 quartz-polymetallic sulfide veins related to phyllic alteration, and stage 4 ore-barren quartz ± calcite ± pyrite veins with weak propylitization. Hydrothermal quartz mainly contains three types of fluid inclusions, namely, two-phase liquid-rich (type I), two- or three-phase gas-rich CO2-bearing (type II) and halite-bearing (type III) inclusions. The last two types of fluid inclusions are absent in stages 1 and 4. Type I inclusions in the silicic zone (stage 1) display homogenization temperatures of 340 to 550 °C, with salinities of 7.9–16.9 wt.% NaCl equivalent. Type II and coexisting type III inclusions in the potassic zone (stage 2), which hosts the main Mo orebodies, have homogenization temperatures of 240–440 °C and 240–450 °C, with salinities of 34.1–50.9 and 0.1–7.4 wt.% NaCl equivalent, respectively. Type II and coexisting type III inclusions in the phyllic zone (stage 3) display homogenization temperatures of 250–345 °C and 220–315 °C, with salinities of 0.2–6.5 and 32.9–39.3 wt.% NaCl equivalent, respectively. Type I inclusions in the propylitization zone (stage 4) display homogenization temperatures of 170 to 330 °C, with salinities lower than 6.5 wt.% NaCl equivalent. The abundant CO2-rich and coexisting halite-bearing fluid inclusion assemblages in the potassic and phyllic zones highlight the significance of intensive fluid boiling of a NaCl–CO2–H2O system in deep environments (up to 2.3 kbar) for giant porphyry Mo mineralization. Hydrogen and oxygen isotopic compositions indicate that ore-fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials at Shapinggou are magmatic in origin. Re–Os dating of molybdenite gives a well-defined 187Re/187Os isochron with an age of 112.7 ± 1.8 Ma, suggesting a post-collisional setting.  相似文献   

11.
In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu–Ni–PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2–3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p–T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage.Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6–2.0 kbar) and temperature (810–920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion.Fluid inclusion assemblages with CO2–H2O–NaCl and CH4–N2–H2O–NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240–650 bar and 120–150 °C for CO2–H2O–NaCl inclusions and 315–360 bar and 145–165 °C for CH4–N2–H2O–NaCl inclusions) are significantly lower than the p–T conditions (> 700 °C and 1.6–2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite inclusions in these fluid inclusions and in the trails of these fluid inclusion assemblages confirms that at least on local scale these fluids played a role in base metal remobilization. No evidences have been observed for PGE remobilization and transport in the samples. The source of the carbonic phase in the carbonic assemblages (CO2; CH4) could be the graphite, present in the metasedimentary hornfelsed inclusions in the basal zones of the South Kawishiwi intrusion.The hydrothermal veins in the charnockite can be characterized by an actinolite + cummingtonite + chlorite + prehnite + pumpellyite + calcite (I–II) + quartz mineral assemblage. Chlorite thermometry yields temperatures around 276–308 °C during the earliest phase of the fluid flow. In the late calcite (II) phase, high salinity (21.6–28.8 NaCl + CaCl2 equiv. wt.%), low temperature (90–160 °C), primary aqueous inclusions were found. Chalcopyrite (± sphalerite ± millerite), replacing and intersecting the early hydrothermal phases, are associated to the late calcite (II) phase. The composition of the formational fluids in the Canadian Shield is comparable with the composition of the studied fluid inclusions. This suggests that the composition of the fluids did not change in the past 2 Ga and base metal remobilization by formational fluids could have taken place any time after the formation of the South Kawishiwi intrusion.Sulfur isotope studies carried out on the primary metamorphic (δ34S = 7.4–8.9‰) and the hydrothermal sulfide mineral assemblage (δ34S = 5.5–5.7‰) proves, that during the hydrothermal fluid flow the primary metamorphic ores were remobilized.  相似文献   

12.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

13.
The Beaverlodge district in northern Saskatchewan is known for “vein-type” uranium mineralization. Most of the uranium deposits are spatially related to major structures, and hosted by ca. 3.2–1.9 Ga granitic rocks (and albitite derived from them) and by ca. 2.33 Ga Murmac Bay Group amphibolite, all of which are unconformably overlain locally by deformed but unmetamorphosed redbeds of the ca. 1.82 Ga Martin Group, and by the flat-lying ca. 1.75–1.5 Ga Athabasca Group. The uranium mineralization is mainly hosted in fault rocks (breccias) and carbonate ± quartz ± albite veins, referred to as breccia-style and vein-style mineralization, respectively, with the latter being the focus of this study. Most of the mineralized veins occur in the basement rocks, although some crosscut the Martin Group. This study examines the field, petrographic, fluid inclusion and C-O isotope characteristics of mineralized and non-mineralized veins from 19 deposits/occurrences as well as from the Martin Group, with an aim to better understand the mineralizing environment and processes.The coexistence of liquid-dominated (L + V), vapour-dominated (V + L) and vapour-only (V) fluid inclusions within individual fluid inclusion assemblages (FIAs) in the veins suggests fluid immiscibility and heterogeneous trapping. The L + V inclusions with the lowest homogenization temperatures (Th) within individual FIAs are interpreted to represent homogeneous trapping of the liquid phase, which yield Th values from 78° to 330 °C (mainly 100° to 250 °C), and salinities from 0.2 to 30.8 wt.% NaCl equivalent. Mass spectrometric analysis of bulk fluid inclusions shows that the volatiles are dominated by H2O (average 97.2 mol%), with minor amounts of CO2, CH4, H2, O2, N2, Ar and He. Fluid pressures were estimated to be < 200 bars based on the inference of fluid immiscibility, fluid temperatures of 100° to 250 °C, and low concentrations of non-aqueous volatiles (< 3 mol%). The δ18OVPDB and δ13CVPDB of carbonate minerals associated with mineralization range from − 20.5 to − 8.9‰ and − 10.1 to − 0.9‰, respectively. The δ18OVSMOW values of the parent fluids calculated using the Th values range from − 9.6 to + 17.0‰, with the majority from 0 to + 5.0‰. O isotopes of paired equilibrium quartz and calcite, analyzed by secondary ion mass spectrometry (SIMS), yield temperatures from 161° to 248 °C, which are consistent with the fluid inclusion data.The new fluid inclusion and stable isotope data are inconsistent with a metamorphic or magmatic-hydrothermal model as proposed in some previous studies (for breccia-style and vein-style mineralization), but rather support a model in which the vein-type uranium mineralization took place at relatively low temperature (100° to 250 °C) and shallow (< 2 km) conditions, with fluid pressure fluctuating between hydrostatic and sub-hydrostatic regimes, possibly related to episodic faulting. The mineralizing fluids were mainly sourced from the Martin Lake Basin, and uraninite was precipitated as a result of mixing between this basin-derived fluid and fluids carrying reducing agents (Fe2 +, CH4) derived from the basement, although fluid-rock reactions and fluid immiscibility may have also played a role.  相似文献   

14.
Pegmatitic and other felsic rock pockets and dike-like intrusions are abundant in the South Kawishiwi Intrusion of the Duluth Complex, including the basal, Cu–Ni–PGE mineralized units. These occurrences are found as pockets, pods or as veins and contain abundant accessory apatite and quartz. Quartz hosts primary fluid inclusions as well as silicate melt inclusions. Combined microthermometry and Raman spectroscopy helped to determine the bulk composition of primary fluid inclusions that are CO2-rich (95 mol%) and contain small amounts of H2O (4.5 mol%), CH4 (0.4 mol%) and trace N2, respectively. This combined technique also made it possible to measure total homogenization temperatures of the inclusions (Thtot = ~ 225 ± 10 °C), otherwise not detectable during microthermometry. Silicate melt inclusions have been quenched to produce homogeneous glasses corresponding to the original melt. Composition of the entrapped melt is granitoid, peraluminous and is very poor in mafic components. We interpret the melt as a product of partial melting of the footwall rocks due to the contact effect of the South Kawishiwi Intrusion. The presence of CO2 in the vapor bubbles of the quenched melt inclusions and petrographic evidence suggest that the fluid and melt inclusion assemblages are coeval. The composition of the fluid and melt phase implies that the fluid originates from the mafic magma of the South Kawishiwi Intrusion and the fluid and melt phases coexisted as a heterogeneous melt–fluid system until entrapment of the inclusions.Coexistence of primary fluid and melt inclusions makes it possible to calculate a minimum entrapment pressure (~ 1.7 kbar) and thus estimate formation depth (~ 5.8 km) for the inclusions. Chlorine is suggested to behave compatibly in the silicate melt phase in the fluid–melt system represented by the inclusions, indicated by the high (up to 0.3%) Cl-concentrations of the silicate melt and CO2-rich nature of the fluid.Apatite halogen-contents provide further details on the behavior of Cl. Apatite in pegmatitic pockets often has elevated Cl-concentrations compared to troctolitic rocks, suggesting enrichment of Cl with progressive crystallization. Systematic trends of Cl-loss at some differentiated melt pockets suggest that in some places Cl exsolved into a fluid phase and migrated away from its source. The segregation of Cl from the melt is probably inhibited by the presence of CO2-rich fluids until the last stages of crystallization, increasing the potential for the development of late-stage saline brines.Platinum-group minerals are often present in microcracks in silicate minerals, in late-stage differentiated sulfide veinlets and in association with chlorapatite, indicating the potential role of Cl-bearing fluids in the final distribution of PGEs.  相似文献   

15.
The Qiangma gold deposit is hosted in the > 1.9 Ga Taihua Supergroup metamorphic rocks in the Xiaoqinling terrane, Qinling Orogen, on the southern margin of the North China Craton. The mineralization can be divided as follows: quartz-pyrite veins early, quartz-polymetallic sulfide veinlets middle, and carbonate-quartz veinlets late stages, with gold being mainly introduced in the middle stage. Three types of fluid inclusions were identified based on petrography and laser Raman spectroscopy, i.e., pure carbonic, carbonic-aqueous (CO2–H2O) and aqueous inclusions.The early-stage quartz contains pure carbonic and CO2–H2O inclusions with salinities up to 12.7 wt.% NaCl equiv., bulk densities of 0.67 to 0.86 g/cm3, and homogenization temperatures of 280−365 °C. The early-stage is related to H2O–CO2 ± N2 ± CH4 fluids with isotopic signatures consistent with a metamorphic origin (δ18Owater = 3.1 to 5.2‰, δD =  37 to − 73‰). The middle-stage quartz contains all three types of fluid inclusions, of which the CO2–H2O and aqueous inclusions yield homogenization temperatures of 249−346 °C and 230−345 °C, respectively. The CO2–H2O inclusions have salinities up to 10.9 wt.% NaCl equiv. and bulk densities of 0.70 to 0.98 g/cm3, with vapor bubbles composed of CO2 and N2. The isotopic ratios (δ18Owater = 2.2 to 3.6‰, δD =  47 to − 79‰) suggest that the middle-stage fluids were mixed by metamorphic and meteoric fluids. In the late-stage quartz only the aqueous inclusions are observed, which have low salinities (0.9−9.9 wt.% NaCl equiv.) and low homogenization temperatures (145−223 °C). The isotopic composition (δ18Owater =  1.9 to 0.5‰, δD =  55 to − 66‰) indicates the late-stage fluids were mainly meteoric water.Trapping pressures estimated from CO2–H2O inclusions are 100−285 MPa for the middle stage, suggesting that gold mineralization mainly occurred at depths of 10 km. Fluid boiling and mixing caused rapid precipitation of sulfides and native Au. Through boiling and inflow of meteoric water, the ore-forming fluid system evolved from CO2-rich to CO2-poor in composition, and from metamorphic to meteoric, as indicated by decreasing δ18Owater values from early to late. The carbon, sulfur and lead isotope compositions suggest the hostrocks within the Taihua Supergroup to be a significant source of ore metals. Integrating the data obtained from the studies including regional geology, ore geology, and fluid inclusion and C–H–O–S–Pb isotope geochemistry, we conclude that the Qiangma gold deposit was an orogenic-type system formed in the tectonic transition from compression to extension during the Jurassic−Early Cretaceous continental collision between the North China and Yangtze cratons.  相似文献   

16.
The Phu Lon skarn Cu–Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals.Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6–468.5 °C; 17.4–23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9–399.8 °C; 0.5–8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (?2.6 to ?1.1 δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu–Au skarn based on the mineralogy and fluid inclusion characteristics.  相似文献   

17.
The Kozbudaklar scheelite skarn deposit in the Tavşanlı Zone, located approximately 22 km southeast of Bursa, is hosted by the Triassic calcic İnönü Marble and Eocene Topuk Pluton. At least four stages have been recognized through skarn evolution. Scheelite skarn distributed close to the Topuk Pluton occurred during the early (stage 1) and late (stage 2) prograde substages. The early prograde endo and exoskarn are composed of hedenbergite (Hd96Joh4)–plagioclase (An55–64) and hedenbergite (Hd61–94Joh4–7), accompanied by calcic garnet (Grs38–94Sps1–5Alm0) and scheelite (Pow1–6). The second stage represents a relatively oxidized mineralogy dominated by diopside (Hd16–48Joh0–9), subcalcic garnet (Grs24–92Sps0–11Alm0–31) and scheelite (Pow7–32). The stage 3 and 4 mineral assemblages are characterized by few hydrous minerals in the retrograde stage and intense fracturing.Fluid inclusions from skarn rocks are indicative of multiple fluid events: (1) low-moderate salinity (5–16 wt.%NaCl equiv.) inclusions homogenized dominantly by a high-temperature (308 °C to > 600 °C) liquid phase in stage 1. Fluid inclusions in an early garnet homogenized over a similar temperature range (440 °C and 459 °C) into both liquid and vapor phases. Eutectic temperatures ranging from − 61.7 °C to − 35.0 °C that indicate the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (2) coexisting daughter mineral-bearing high salinity (29.5  70 wt.%NaCl equiv.) and vapor-rich moderate salinity (11.5–16.7 wt.%NaCl equiv.) inclusions that homogenized in the liquid phase by the disappearance of the vapor phase at a similar temperature range (308 °C to > 600 °C) in stage 2. Eutectic temperatures range from − 67.9°C to − 51.8°C that shows the presence of H2O–NaCl–CO2–(± CH4/N2) solutions; (3) low-moderate salinity (12.5–7.6 wt.%NaCl equiv.) and temperature (320 °C to 215 °C) inclusions homogenized by the liquid phase in stage 3. Eutectic temperatures range from − 59.5 °C to − 44.2 °C indicating the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (4) inclusions of low salinity (9.9–0.9 wt.%NaCl equiv.) and homogenization temperature (183 °C to 101 °C) in stage 4.These data show that the Kozbudaklar skarn deposit was formed in a magmatic–hydrothermal system. In this model, carbonaceous fluids may have been exsolved from the plutonic rock during its emplacement and crystallization. Fluid inclusion data indicate that fluid boiling and immiscibility occurred at temperatures between 440 °C and 459 °C and pressures ranging from 50 MPa to 60 MPa based on hydrostatic considerations. Early scheelite was precipitated with relatively reduced mineral compositions. As a result of depressurization, Mo-rich scheelite with oxidized minerals formed via high salinity and vapor-rich inclusions. The second scheelite mineralization occurred in a normal hydrothermal system by an infiltration mechanism at pressures between approximately 40 and 1.5 MPa. At shallow depths (< 1.5 MPa) with increasing permeability, sulfide and oxide minerals were deposited in the retrograde stage, greatly assisted by meteoric water. Finally, as a result of the diminishing of ore-forming fluids, post-depositional barren quartz and calcite veins were formed.  相似文献   

18.
The Lanjiagou porphyry molybdenum deposit in western Liaoning Province, China, is hosted in fine-grained Jurassic granites. LA-ICP-MS zircon U–Pb analyses indicate that the crystallization of the ore-hosting granites took place 185.0 ± 1.8 Ma (MSWD = 1.4). Molybdenum mineralization in the deposit can be divided into three stages: the stockwork quartz vein stage, the planar quartz vein stage, and the fissure-filling quartz vein stage. Re–Os isotopic ages for the molybdenite from the stockwork quartz vein-type ores yielded an isochron age of 188.8 ± 9.9 Ma (MSWD = 3.0), while six samples from the planar quartz vein-type ores yielded a similar isochron age of 185.6 ± 1.2 Ma (MSWD = 0.5). Re–Os isotopic ages for the molybdenite identical, within error, to zircon U–Pb isotopic ages indicate that the molybdenum mineralization is related to the host intrusions. Apart from primary inorganic fluid inclusions (IFIs), a large number of primary organic fluid inclusions (OFIs) are found in the latter two stages of vein quartz, and minors found in the first stage. The components and characteristics of OFIs in the three stages of vein quartz differ from each other, which is also true for the IFIs. OFIs in stockwork vein quartz are characterized by halite-bearing inclusions, and organic liquids in the inclusions are brown and do not fluoresce under ultraviolet (UV) light. Homogenization temperatures (Th) for the primary IFIs coeval with OFIs of this stage ranges from 300 °C to > 450 °C, while the salinity varies from 10 to 53 wt.% NaCl equiv.. In planar vein quartz, OFIs are predominately two-phased (liquid and gas), and salt daughter minerals (halite) are absent. Organic liquids are light brown to colorless and show blue fluorescence under UV light; The Th range for the IFIs of this stage is 250–360 °C, and the salinity range is 3–17 wt.% NaCl equiv. Finally, OFIs in fissure-filling vein quartz are marked by liquid–gas inclusions. Organic liquids are generally colorless and show yellow fluorescence under UV light. The Th range for the primary IFIs is 180–240 °C and the salinity range is 4–11 wt.% NaCl equiv. Organic geochemical analyses indicate that organic matter in the Lanjiagou deposit was derived from mature crude oil. We suggest that large volumes of crude-oil-bearing non-magmatic fluids were flushed into the Lanjiagou porphyry hydrothermal system during all phases of ore formation and likely played important roles in mineralization.  相似文献   

19.
Located along the southern part of the Yarlung Zangbo suture zone in southern Tibet, Bangbu is one of the largest gold deposits in Tibet. Auriferous sulfide-bearing quartz veins are controlled by second- or third-order brittle fractures associated with the regional Qusong–Cuogu–Zhemulang brittle-ductile shear zone. Fluid inclusion studies show that the auriferous quartz contains aqueous inclusions, two-phase and three-phase CO2-bearing inclusions, and pure gaseous hydrocarbon inclusions. The CO2-bearing inclusions have salinities of 2.2–9.5% NaCleq, and homogenization temperatures (Th) of 167–336 °C. The δD, δ18O, and δ13C compositions of the Bangbu ore-forming fluids are − 105.5 to − 44.4‰, 4.7 to 9.0‰ and − 5.1 to − 2.2‰, respectively, indicating that the ore-forming fluid is mainly of metamorphic origin, with also a mantle-derived contribution. The 3He/4He ratio of the ore-forming fluids is 0.174 to 1.010 Ra, and 40Ar/36Ar ranges from 311.9 to 1724.9. Calculations indicate that the percentage of mantle-derived He in fluid inclusions from Bangbu is 2.7–16.7%. These geochemical features are similar to those of most orogenic gold deposits. Dating by 40Ar/39Ar of hydrothermal sericite collected from auriferous quartz veins at Bangbu yielded a plateau age of 44.8 ± 1.0 Ma, with normal and inverse isochronal ages of 43.6 ± 3.2 Ma and 44 ± 3 Ma, respectively. This indicates that the gold mineralization was contemporaneous with the main collisional stage between India and Eurasia along the Yarlung Zangbo suture, which resulted in the development of near-vertical lithospheric shear zones. A deep metamorphic fluid was channeled upward along the shear zone, mixing with a mantle fluid. The mixed fluids migrated into the brittle structures along the shear zone and precipitated gold, sulfides, and quartz because of declining temperature and pressure or fluid immiscibility. The Bangbu is a large-scale Cenozoic syn-collisional orogenic gold deposit  相似文献   

20.
The Wang'ershan gold deposit, located in the southern Jiaojia goldfield, is currently the largest gold deposit hosted within the subsidiary faults in Jiaodong Peninsula, with a gold reserve of > 60 t gold at a grade of 4.07 g/t Au. It is hosted in the Late Jurassic Linglong biotite granites and controlled by the second-order, N- to NNE-trending Wang'ershan Fault (and its subsidiary faults) which is broadly parallel to the first-order Jiaojia Fault in the goldfield. Gold mineralization occurs as both disseminated- and stockwork-style and quartz–sulfide vein-style ores, mainly within altered cataclasites and breccias, and sericite–quartz and potassic alteration zones, respectively. Mineralization stages can be divided into (1) the pyrite–quartz–sericite stage, (2) the quartz–pyrite stage, (3) the quartz–sulfide stage, and (4) the quartz–carbonate stage.Two sericite samples associated with the main ore-stage pyrites from pyritic phyllic ores of the deposit with weighted mean plateau 40Ar/39Ar age of 120.7 ± 0.6 Ma and 119.2 ± 0.5 Ma, respectively, were selected for 40Ar/39Ar geochronology. On the basis of petrography and microthermometry, three types of primary fluid inclusions related to the ore forming event were identified: type 1 H2O–CO2–NaCl, type 2 aqueous, and type 3 CO2 fluid inclusions (in decreasing abundance). Stage 1 quartz contains all three primary fluid inclusions, while stages 2 and 3 quartz contain both type 1 and 2 inclusions, and stage 4 quartz contains only type 2 inclusions. The contemporaneous trapping, similar salinities and total homogenization temperature ranges, and different homogenization phases of type 1 and type 2 inclusions indicate that fluid immiscibility did take place in stages 1, 2 and 3 ores, with P–T conditions of 190 to 85 MPa and 334 to 300 °C for stage 1 and 200 to 40 MPa and 288 to 230 °C for stages 2 and 3. Combined with the H–O–C–S–Pb isotopic compositions, ore-forming fluids may have a metamorphic-dominant mixed source, which could be associated with the dehydration and decarbonisation of a subducting paleo-Pacific plate and characterized by medium–high temperature (285–350 °C), CO2-bearing (~ 8 mol%) with minor CH4 (1–4% in carbonic phase), and low salinity (3.38–8.45 eq. wt.% NaCl). During mineralization, the fluid finally evolved into a medium–low temperature NaCl–H2O system. Au(HS)2 was the most probable gold-transporting complex at Wang'ershan, due to the low temperature (157–350 °C) and near-neutral to weakly acidic ore fluids. The reaction between gold-bearing fluids and iron-bearing wall-rocks, and fluid-immiscibility processes caused via fluid–pressure cycling during seismic movement along fault zones that host lode-gold orebodies, which led to breakdown of Au(HS)2, are interpreted as the two main precipitation mechanisms of gold deposition.In general, the Wang'ershan deposit and other deposits in the Jiaojia camp have concordant structural system and wall-rock alteration assemblages, nature of orebodies and gold occurrence conditions, as well as the similar geochronology, ore-forming fluids system and stable isotope compositions. Thus gold mineralization in the Jiaojia goldfield was a large-scale unified event, with consistent timing, origin, process and mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号