首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial dolomite crusts from the carbonate platform off western India   总被引:1,自引:1,他引:1  
Abstract The occurrence of Late Pleistocene dolomite crusts that occur at 64 m depth on the carbonate platform off western India is documented. Dolomite is the most predominant mineral in the crusts. In thin section, the crust consists of dolomitized microlaminae interspersed with detrital particles. Under scanning electron microscopy, these laminae are made up of tubular filaments or cellular structures of probable cyanobacterial origin. Dolomite crystals encrust or overgrow the surfaces of the microbial filaments and/or cells; progressive mineralization obliterates their morphology. Well-preserved microbial mats, sulphide minerals (pyrrhotite and marcasite) and the stable isotope composition of dolomite in the crusts indicate hypersaline and anoxic conditions during dolomite formation. The crusts are similar to dolomite stromatolites, and biogeochemical processes related to decaying microbial mats under anoxic conditions probably played an important role in dolomite precipitation. The dolomite is therefore primary and/or very early diagenetic in origin. The dolomite crusts are interpreted to be a composite of microbial dolomite overprinted by early burial organic dolomite. The results of this study suggest that a microbial model for dolomite formation may be relevant for the origin of ancient massive dolomites in marine successions characterized by cryptalgal laminites. The age of the crusts further suggests that the platform was situated at shallow subtidal depths during the Last Glacial Maximum.  相似文献   

2.
塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组发育3种类型碳酸盐岩微生物(蓝细菌)建造,即下部微生物丘状和层状建造、中上部微生物礁和顶部叠层石建造。微生物丘状和层状建造的特点是似层状孔洞和纹层结构发育,形成于潮下高能带,与微生物席粘结有关,分布相对稳定。微生物礁是由枝状或丛状微生物骨架生长和微生物席粘结两种方式形成,分布较广,可分为两大期:第1大期发育在海退背景下,呈宏观块状建造特征;第2大期则发育在较大的海侵背景下,呈现两期点礁特征。叠层石建造发育在更大范围的海侵背景下,超覆于点状建造之上,要求的水动力条件相对较强,由微生物粘结作用形成,其中叠层石和核形石是其重要标志,仅分布在研究区北部的苏Ⅱ、苏Ⅲ和苏Ⅳ剖面近顶部。  相似文献   

3.
In the Tarim Basin, dolomite, which formed during the middle Cambrian associated with evaporites, has been attributed to the sabkha-style dolomite formed during the syndepositional period. The sedimentary microfacies suggests dolomite formation in the middle Cambrian is an ancient analogue of the sabkha of Abu Dhabi. Poorly crystallised dolomite spheroids or ovoids within or on the surface of dolomite crystals are a common phenomenon that can be widely observed in different stromatolites in the upper part of the intertidal zone and strongly resemble the morphology in modern sabkha dolomite-producing microbial mats and in microbial culture experiments. These lines of evidence suggest organic substrates for dolomite nucleation. Dolomite formation in the middle Cambrian in the Tarim Basin has been considered a classic analogue for carbonate and evaporate assemblages. The extent of microbial dolomite in ancient sabkha environments is proposed as an alternative model for dolomite formation, in which the mineral properties of organic substrates play a crucial role.  相似文献   

4.
5.
Recent studies of continental carbonates revealed that carbonates with similar fabrics can be formed either by biotic, biologically-induced, biologically-influenced or purely abiotic processes, or a combination of all. The aim of this research is to advance knowledge on the formation of carbonates precipitated (or diagenetically altered) in extreme, continental environments by studying biotic versus abiotic mechanisms of crystallization, and to contribute to the astrobiology debate around terrestrial analogues of Martian extreme environments. Both fossil (upper Pleistocene to Holocene) and active carbonate spring mounds from the Great Artesian Basin (South Australia) have been investigated. These carbonates consist of low-Mg to high-Mg calcite tufa. Four facies have been described: (i) carbonate mudstone/wackestone; (ii) phytohermal framestone/boundstone; (iii) micrite boundstone; and (iv) coarsely crystalline boundstone. The presence of filaments encrusted by micrite, rich in organic compounds, including ultraviolet-protectants, in phytohermal framestone/boundstone and micrite boundstone is clear evidence of the existence of microbial mats at the time of deposition. In contrast, peloidal micrite, despite commonly being considered a microbial precipitate, is not directly associated with filaments in the Great Artesian Basin mounds. It has probably formed from nanocrystal aggregation on colloid particulate. Thus, where biofilms have been documented, it is likely that bacteria catalyzed the development of fabrics. It is less certain that microbes induced calcium carbonate precipitation elsewhere. Trace elements, including rare earth element distribution from laminated facies, highlight strongly evaporative settings (for example, high Li contents). Carbon dioxide degassing and evaporation are two of the main drivers for an increase in fluid alkalinity, resulting in precipitation of carbonates. Hence, although the growth of certain fabrics is fostered by the presence of microbial mats, the formation of carbonate crystals might be independent from it and mainly driven by extrinsic factors. More generally, biological processes may be responsible for fabric and facies development in micritic boundstone whilst micrite nucleation and growth are driven by abiotic factors. Non-classical crystallization pathways (aggregation and fusion of nanoparticles from nucleation clusters) may be more common than previously thought in spring carbonate and this should be carefully considered to avoid misinterpretation of certain fabrics as by-products of life. It is proposed here that the term ‘organic-compound catalyzed mineralization’ should be used for crystal growth in the presence of organic compounds when dealing with astrobiological problems. This term would account for the possibility of multiple crystallization pathways (including non-classical crystallization) that occurred directly from an aqueous solution without the direct influence of microbial mats.  相似文献   

6.
Ancient microbialites reflect interactions between microbial communities and environmental conditions. However, evaluating the relative roles of microbial community processes and environmental influences on microbialite morphology and internal fabric in the rock record can be challenging. The Neoproterozoic Beck Spring Dolomite preserves diverse microbialites, and thus provides an opportunity to explore the factors that influenced microbialite development locally. Stromatolitic, thrombolitic and composite microbialites are abundant in subtidal to upper intertidal carbonates in the Beck Spring Dolomite. Thrombolitic and composite microbialites have not been recognized previously in this unit, but compose much of the newly defined thrombolitic member. Stratigraphic relationships demonstrate that these three types of microbialites formed in close spatial and temporal association in subtidal to intertidal environments. The relative proportions and distributions of stromatolitic and thrombolitic microbialites vary with depositional environment; stromatolitic microbialites dominate in deeper intertidal to subtidal facies, whereas thrombolitic textures are more abundant in upper intertidal facies. Composite microbialites, composed of intermingled clotted and laminated textures, formed in all environments but are most abundant in intertidal facies. The broad environmental distribution of stromatolitic, thrombolitic and composite microbialites and the intermingling of textures suggest that laminated and clotted textures reflect diverse microbial community morphologies rather than environmental variations. Furthermore, the ca 750 Ma age of thrombolitic microbialites in the Beck Spring Dolomite requires that they formed without the influence of calcimicrobes or metazoans colonizing and grazing the microbial mat surface. Thus, these thrombolites provide further evidence that the biostratigraphic distribution of thrombolites cannot be uniquely attributed to evolution of calcifying and grazing organisms in the earliest Cambrian, and that older microbial communities were capable of producing clotted textures.  相似文献   

7.
Alkaline lakes like the hydrothermally affected lake Specchio di Venere (Pantelleria Island, Central Mediterranean) are typical geological settings harbouring calcified microbial mats. The present work is focused on the discrimination between biotic and abiotic processes driving carbonate precipitation in this lake, using hydrochemical, mineralogical and isotopic data. Hydrochemical analyses demonstrate that the lake is nearly 10−fold supersaturated with regard to aragonite and seasonally reaches hydromagnesite supersaturation. Microscopic observations depict organosedimentary laminated structures consisting of microbial communities and aragonitic precipitates, which are rather disseminated in pores than directly linked to microorganisms. Oxygen isotopic data indicate that authigenic carbonate crystallisation from evaporating water is the dominant precipitation process, further suggested by the absence of textural evidence of diagenetic processes. Conversely, the observed δ13C values reflect an influence of extracellular polymeric substances (EPS) on carbon fractionation during the precipitation process, due to the selective sequestration of 12C in the biomass. The above considerations suggest that at lake Specchio di Venere the carbonate precipitation is mainly of inorganic nature, but a minor role played by biologically influenced processes in microbial mats is not excluded.  相似文献   

8.
Processes of carbonate precipitation in modern microbial mats   总被引:20,自引:0,他引:20  
Microbial mats are ecosystems that arguably greatly affected the conditions of the biosphere on Earth through geological time. These laminated organosedimentary systems, which date back to > 3.4 Ga bp, are characterized by high metabolic rates, and coupled to this, rapid cycling of major elements on very small (mm-µm) scales. The activity of the mat communities has changed Earth's redox conditions (i.e. oxidation state) through oxygen and hydrogen production. Interpretation of fossil microbial mats and their potential role in alteration of the Earth's geochemical environment is challenging because these mats are generally not well preserved.Preservation of microbial mats in the fossil record can be enhanced through carbonate precipitation, resulting in the formation of lithified mats, or microbialites. Several types of microbially-mediated mineralization can be distinguished, including biologically-induced and biologically influenced mineralization. Biologically-induced mineralization results from the interaction between biological activity and the environment. Biologically-influenced mineralization is defined as passive mineralization of organic matter (biogenic or abiogenic in origin), whose properties influence crystal morphology and composition. We propose to use the term organomineralization sensu lato as an umbrella term encompassing biologically influenced and biologically induced mineralization. Key components of organomineralization sensu lato are the “alkalinity” engine (microbial metabolism and environmental conditions impacting the calcium carbonate saturation index) and an organic matrix comprised of extracellular polymeric substances (EPS), which may provide a template for carbonate nucleation. Here we review the specific role of microbes and the EPS matrix in various mineralization processes and discuss examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites.  相似文献   

9.
Heavy metal concentrations of a recent salina on the shore of the Mediterranean Sea near Port Said (Egypt) were investigated. Samples for the heavy metal study were taken in different ponds of the salina. It was found that microbial mat dominated brine sediments concentrated and enriched heavy metal 2–3 times more than sediments lacking microbial mat developments, suggesting that cyanobacteria play a major role in this enrichment. Heavy metal enrichment by cyanobacteria was therefore also studied in the laboratory environment. This study is compared with a recent study of Solar Lake and Sabkha Gavish sediments (Sinai, Egypt). Our conclusion is that recent hypersaline environments with ambient microbial mat (potential stromatolite) developments are ideal examples of present-day environments of metal accumulations.  相似文献   

10.
Interactions of the microbial mat community with the sedimentary environment were evaluated in two shallow, ephemeral lakes with markedly different hydrochemistry and mineralogy. The characterization of growing and decaying microbial mats by light microscopy observations and fluorescence in situ hybridization was complemented with biogeochemical and mineralogical measurements. The lakes studied were Eras and Altillo Chica, both located in Central Spain and representing poly-extreme environments. Lake Eras is a highly alkaline, brackish to saline lake containing a high concentration of chloride, and in which the carbonate concentration exceeds the sulfate concentration. The presence of magnesium is crucial for the precipitation of hydromagnesite in microbialites of this lake. Altillo Chica is a mesosaline to hypersaline playa lake with high concentrations of sulfate and chloride, favoring the formation of gypsum microbialites. Differences in the microbial community composition and mineralogy of the microbialites between the two lakes were primarily controlled by alkalinity and salinity. Lake Eras was dominated by the cyanobacterial genus Oscillatoria, as well as Alphaproteobacteria, Gammaproteobacteria and Firmicutes. When the mat decayed, Alphaproteobacteria and Deltaproteobacteria increased and became the dominant heterotrophs, as opposed to Firmicutes. In contrast, Deltaproteobacteria was the most abundant group in Lake Altillo Chica, where desiccation led to mats decay during evaporite formation. In addition to Deltaproteobacteria, Cyanobacteria, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were found in Altillo Chica, mostly during microbial mats growth. At both sites, microbial mats favored the precipitation of sulfate and carbonate minerals. The precipitation of carbonate is higher in the soda lake due to a stronger alkalinity engine and probably a higher degradation rate of exopolymeric substances. Our findings clarify the distribution patterns of microbial community composition in ephemeral lakes at the levels of whole communities, which were subjected to environmental conditions similar to those that may have existed during early Earth.  相似文献   

11.
Microbial mats, mainly dominated by filamentous algae Calothrix and Oscillatoria, are well developed in Tibetan hot springs. A great number of fossil microorganisms, which existed as algae lamination in thermal depositional cesium-bearing geyserite in this area, are identified as Calothrix and Oscillatoria through microexamination and culture experiments. These microbial mats show the ability to accumulate cesium from spring water to the extent of cesium concentration of 0.46–1.03% cell dry weight, 900 times higher than that in water, and capture large numbers of cesium-bearing opal grain. Silicon dioxide colloid in spring water replaces and fills with the organism and deposits on it to form algae laminated geyserite after dehydration and congelation. Cesium in the microbial mats and opal grain is then reserved in the geyserite. Eventually, cesium-bearing algae laminated geyserite is formed. Study on cesium distribution in geyserite also shows that cesium content in algae lamination, especially in heavily compacted algae lamination, is higher than in the opal layer. For geyserite with no algae lamination or other organism structure, which is generally formed in spring water with low silicon content, cesium accumulation and cesium-bearing opal grain assembled by the microbial mats are also indispensable. After the microbial mats accumulating cesium from spring water, silicon dioxide colloid poorly replaces and fills with the organism to form opal grain-bearing tremellose microbial mats. The shape and structure of the organisms are then destroyed, resulting in cesium-bearing geyserite with no algae lamination structure after dehydration and congelation. It is then concluded that microbial mats in the spring area contribute to the enrichment of cesium in the formation of cesium-bearing geyserite, and a biological genesis of the geyserite, besides of the physical and chemical genesis, is likely.  相似文献   

12.
Structural diversity of biogenic carbonate particles in microbial mats   总被引:4,自引:0,他引:4  
Non-skeletal carbonate particles in microbial mats were studied using thin sections and scanning electron microscopy. The microbial mats form biolaminated units (so-called potential stromatolites) in salterns. This study emphasizes the coexistence of different particle forms and makes a genetic connection between the heterogeneity of the organic substrate built by bacteria and diatoms and their extracellular polymeric substances (EPS). Whereas allochthonous particles are scarce, Lanzarote microbial mats provide various autochthonous surfaces for the attachment of cells and EPS, including sheaths and capsules of cyanobacteria, frustules of diatoms, metabolic products such as gas bubbles, liquid globules and faecal pellets, as well as the carbonate precipitates themselves. Morphologically different carbonate precipitates are: (i) calcified organic clumps (peloids), (ii) particles composed of concentric aragonite and biofilm laminae (ooids and oncoids), (hi) isolated particles floating in gel-supported mats and coated by rims of fibrous cement (cortoids), (iv) particles bound by cryptocrystalline matrices or cement, resulting in aggregate grains and (v) lobate cement which fills out spaces and pores and fixes the particles. Peloids are suggested to represent faecal pellets although microbial systems also generate cell clumps by non-faecal processes. Ooid and oncoid constructions clearly record alternating processes of biofilm accumulation and aragonite encrustation. Further characteristic features of carbonate particles generated within a microbial mat are: (i) an irregular distribution ranging from isolated particles floating within the gel-like matrix to closely packed particles, (ii) the amalgamation of different particle types (e.g. peloids and ooids) in aggregate grains, (iii) the heterogeneous nature of nuclei comprising bacterial clumps, intraclasts, individual cells, cell colonies and bubbles, (iv) the enrichment of remains, casts and imprints of cells within precipitates and (v) deformation (e.g. truncated cortices) of particles.  相似文献   

13.
The Zechstein Basin of Poland was an area of widespread cyclical deposition of carbonates and evaporites during Late Permian time. The Zechstein shelves, along both the northern and the southern margins of the basin, were sites of shallow-water sedimentation during the formation of the Main Dolomite and Platy Dolomite, two widespread carbonate units. These units consist of oolitic, peloidal, skeletal, micritic and evaporitic carbonates formed in depositional settings ranging from open marine to coastal (lagoonal, sabkha and salina). Although originally deposited as limestones, the Main Dolomite and Platy Dolomite are inferred to have been completely replaced by dolomite through very early stage (essentially penecontemporaneous) reflux of hypersaline brines. The dolomites of the two basin margins, however, have very different petrographic and isotopic characteristics. Many northern shelf dolomites show early stage calcitization (dedolomitization) and even, in some cases, evidence of a subsequent redolomitization event. These northern shelf samples also have a broad range of carbon and oxygen isotopic ratios (up to 12%0 for oxygen). Samples from the southern shelf, on the other hand, are petrographically much simpler; they do not show complex calcitization and redolomitization patterns. Likewise, their isotopic values are much more tightly clustered, with only about a 5%0 range of oxygen isotopic ratios. The differences between dolomites of the same age from the northern and southern margins are best explained by regional variations in river water influx during episodic exposure events associated with regional or global sea-level fluctuations. The distribution of clastic terrigenous materials and palaeokarstic features indicate that areas of the northern shelf had extensive river input, an influx largely lacking on the southern shelf. Early formed dolomites appear to have been calcitized during sea-level lowstands through the infiltration of meteoric fluids into the evaporitic dolomites created during the previous highstand. In some cases, redolomitization occurred when meteoric fluids were again replaced by hypersaline brines during subsequent sea-level highstands. Although repeated sea-level fluctuations are clearly evident in these strata, it is likely that associated climatic changes (rainfall variations) also played a role in forming these complex diagenetic patterns. Age-equivalent strata from Texas and New Mexico (from sites at much lower palaeolatitudes) show no such alteration patterns; samples from Greenland (slightly higher palaeolatitudes) show even more intense diagenetic alteration during depositional cycles. Thus, the examination of patterns of diagenesis may be useful in interpreting ancient, palaeolatitudinally sensitive climate patterns.  相似文献   

14.
Microbial mat communities host complex biogeochemical processes and play a role in the formation of most carbonate rocks by influencing both carbonate precipitation and dissolution. In this study, the biogeochemistry of microbial mats from the hypersaline Salt Pond, San Salvador, Bahamas are described using scanning electron microscopy, X-ray diffraction, microelectrode profiling, fatty acid methyl esters, and carbon and nitrogen analyses. These microbial mats are distinctly layered both chemically and with regard to composition of microbial community, where significant (?? < 0.05) differences are noted between layers and cores. Furthermore, an oxic upper zone and an H2S-rich lower zone dominate the Salt Pond microbial mats, where H2S concentrations were measured approaching 8 mM. The high H2S concentrations along with the lacking evidence of mineral precipitation in SEM images point to the prevalence of carbonate dissolution. Moreover, the high concentrations of organics (3?C9%) reveal that the mats are self-sourcing and can provide ample fuel to sustain the highly active heterotrophic (both aerobic and anaerobic) metabolism. Seasonal differences in sulfide and oxygen concentrations in Salt Pond mats indicate that the carbonate dissolution and precipitation reactions are dynamic in this hypersaline lake.  相似文献   

15.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   

16.
梅朝佳 《古地理学报》2018,20(3):453-464
作为微生物碳酸盐岩的主要类型之一,叠层石是微生物席的主要建造物已成为共识。天津蓟县中元古界铁岭组二段叠层石生物礁灰岩发育,其中的细粒叠层石被前人解释为微生物席捕获碳酸盐泥的微生物建造物,使得其既不同于现代叠层石,也不同于显生宙尤其是寒武纪的叠层石。更为特殊的是,这些叠层石中的海绿石和黄铁矿代表着2种特殊的矿化作用,其中研究区普遍产出的黄铁矿,作为硫酸盐还原细菌的产物,是了解古代微生物的窗口;而发育在高能浅海的海绿石,产出环境不同于现代海绿石,不能作为慢速沉积环境的指示矿物,亦不具有沉积间断的地质意义。2种矿化作用表明铁岭组叠层石是由沉淀作用而非捕获碳酸盐泥形成,这为了解中元古代叠层石的形成和特征提供了一些有益的线索。  相似文献   

17.
Dolomite, magnesite, calcite and aragonite are described from sandstones and conglomerates of the Grödener Schichten of the Dobratsch in the Gailtal Alps, Carinthia — Austria. The carbonates occur as early and late diagenetic cements, as recrystallized matrix of more or less laminated carbonate layers (up to 0.5 m thick), as concretions, as fillings of early diagenetic shrinkage cracks and late diagenetic fissures and as crystals in open cavities and clefts. The formation of dolomite and magnesite may have been caused by pore solutions highly enriched in magnesium, which are likely to have formed by evaporation in a hypersaline environment. Magnesite and dolomite most probably have been formed diagenetically from aragonite and/or calcite during progressive evaporation cycles. Because of magnesite is a common constituent in Permo-Scythian sediments of the Eastern Alps, its presence is of importance for the evaluation of the environment. Additionally the wide-spread occurrence of magnesite within these post variscian sediments has important implications regarding the paleogeographical reconstruction and the evaluation of diagenetic processes.  相似文献   

18.
Geological significance of Coorong dolomites   总被引:2,自引:0,他引:2  
Microcrystalline dolomite and related carbonate minerals have been forming throughout the Quaternary in shallow ephemeral alkaline lakes on the coastal plain of the Coorong area in southern Australia. These Coorong dolomites differ significantly from sabkha-type dolomites. They form in areas where evaporation rates during summer months exceed groundwater inflow rates to a series of alkaline lakes. This results in the lakes becoming desiccated during summer months. Brines resulting from this drying phase are then refluxed out of the system into seaward-flowing groundwaters of an unconfined coastal aquifer. Dolomites and other fine-grained carbonates remain behind, whilst saline and sulphate evaporite minerals are flushed out of the system. Progressive restriction by sedimentation in and around the Holocene coastal dolomite lakes results in an upward-shoaling sedimentary cycle. Basal sediments which formed in a restricted marine environment pass upwards to lacustrine dolomites or magnesites exhibiting desiccation and groundwater resurgence structures such as mudcracks and teepees. The upper Proterozoic Skillogallee Dolomite Formation, an early rift basin unit of the Adelaide Supergroup, contains dolomites which show many of the features characteristic of the peculiar groundwater hydrology which plays an important role in Coorong dolomite genesis. These features include aphanitic dolomites which lack relict saline or sulphate evaporite minerals. The Skillogallee Dolomite Formation in some areas overlies an earlier dolomitic unit, informally named the Callanna Beds, typified by abundant pseudomorphs after sulphate minerals. Sabkha style dolomites characterizing the Callanna Beds are replaced up-section by the Coorong-type dolomite of the Skillogallee Dolomite Formation. This implies the development of an increasingly more active groundwater regime. The ultimate source and mode of concentration of the necessary Mg required to form both the modern and ancient dolomites remain imperfectly understood.  相似文献   

19.
均一石以隐晶质岩性、无纹层与凝块结构发育为特征,与叠层石、凝块石、树形石并列为典型的微生物岩。然而,由于均一石在1995年命名以来很少在地层记录中得到识别和描述,并且缺乏现代实例的类比物,使得关于均一石的报道极具研究价值。为研究华北地台寒武系均一石沉积组构与形成环境特征,系统性地针对河北涞源祁家峪剖面芙蓉统长山组均一石生物丘进行研究。芙蓉统长山组从下部陆棚相钙质泥岩向上变浅至浅缓坡相厚层块状泥晶灰岩,组成了一个淹没不整合型三级层序。三级层序顶部的浅缓坡相厚层块状泥晶灰岩层,代表强迫型海退过程沉积,其内部发育一系列米级均一石生物丘。研究结果表明,这些生物丘主体为致密泥晶及少量微量晶组成,其中可见到附枝菌(Epiphyton)、葛万菌(Girvanella)、肾形菌(Renalcis)等钙化微生物化石。这些钙化微生物(蓝细菌)化石的出现,代表了显生宙第一幕蓝细菌钙化作用事件的证据,同时间接的说明均一石生物丘形成于蓝细菌主导的微生物席的钙化作用过程之中。同时,生物丘内还局部集中发育底栖鲕粒与草莓状黄铁矿颗粒,表明了生物丘形成过程中复杂的微生物沉积作用机制。因此,河北涞源长山组顶部的均一石生物丘,尽管泥晶和微亮晶是其基本构成,但是各种钙化蓝细菌化石以及底栖鲕粒与草莓状黄铁矿颗粒的局部出现表明了在蓝细菌主导的微生物席中复杂的微生物活动信号,成为了解生物丘形成机制、显生宙第一幕蓝细菌钙化作用事件的典型实例。  相似文献   

20.
Through early lithification, cyanobacterial mats produced vast amounts of CaCO3 on Precambrian carbonate platforms (before 540 Myr ago). The superposition of lithified cyanobacterial mats forms internally laminated, macroscopic structures known as stromatolites. Similar structures can be important constituents of Phanerozoic carbonate platforms (540 Myr to present). Early lithification in modern marine cyanobacterial mats is thought to be driven by a metabolically-induced increase of the CaCO3 saturation state (ΩCaCO3) in the mat. However, it is uncertain which microbial processes produce the ΩCaCO3 increase and to which extent similar ΩCaCO3 shifts were possible in Precambrian oceans whose chemistry differed from that of the modern ocean. I developed a numerical model that calculates ΩCaCO3 in cyanobacterial mats and used it to tackle these questions. The model is first applied to simulate ΩCaCO3 in modern calcifying cyanobacterial mats forming at Highborne Cay (Bahamas); it shows that while cyanobacterial photosynthesis increases ΩCaCO3 considerably, sulphate reduction has a small and opposite effect on mat ΩCaCO3 because it is coupled to H2S oxidation with O2 which produces acidity. Numerical experiments show that the magnitude of the ΩCaCO3 increase is proportional to DIC in DIC-limited waters (DIC < 3-10 mM), is proportional to pH when ambient water DIC is not limiting and always proportional to the concentration of Ca2+ in ambient waters. With oceanic Ca2+ concentrations greater than a few millimolar, an appreciable increase in ΩCaCO3 occurs in mats under a wide range of environmental conditions, including those supposed to exist in the oceans of the past 2.8 Gyr. The likely lithological expression is the formation of the microsparitic stromatolite microtexture—indicative of CaCO3 precipitation within the mats under the control of microbial activity—which is found in carbonate rocks spanning from the Precambrian to recent. The model highlights the potential for an increase in the magnitude of the ΩCaCO3 shift in cyanobacterial mats throughout Earth’s history produced by a decrease in salinity and temperature of the ocean, a decrease in atmospheric pCO2 and an increase in solar irradiance. Such a trend would explain how the formation of the microsparitic stromatolite microtexture was possible as the ΩCaCO3 of the ocean decreased from the Paleoproterozoic to the Phanerozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号