首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Relic gravitational waves(RGWs), a background originating during inflation, would leave imprints on pulsar timing residuals. This makes RGWs an important source for detection of RGWs using the method of pulsar timing. In this paper, we discuss the effects of RGWs on single pulsar timing, and quantitatively analyze the timing residuals caused by RGWs with different model parameters. In principle, if the RGWs are strong enough today, they can be detected by timing a single millisecond pulsar with high precision after the intrinsic red noises in pulsar timing residuals are understood, even though simultaneously observing multiple millisecond pulsars is a more powerful technique for extracting gravitational wave signals. We correct the normalization of RGWs using observations of the cosmic microwave background(CMB), which leads to the amplitudes of RGWs being reduced by two orders of magnitude or so compared to our previous works. We obtained new constraints on RGWs using recent observations from the Parkes Pulsar Timing Array, employing the tensor-to-scalar ratio r = 0.2 due to the tensor-type polarization observations of CMB by BICEP2 as a reference value, even though its reliability has been brought into question. Moreover, the constraints on RGWs from CMB and Big Bang nucleosynthesis will also be discussed for comparison.  相似文献   

2.
The pulsar timing residuals induced by gravitational waves from non- evolving single binary sources are affected by many parameters related to the relative positions of the pulsar and the gravitational wave sources. We will analyze the various effects due to different parameters. The standard deviations of the timing residuals will be calculated with a variable parameter fixing a set of other parameters. The or- bits of the binary sources will be generally assumed to be elliptical. The influences of different eccentricities on the pulsar timing residuals will also be studied in detail. We find that the effects of the related parameters are quite different, and some of them display certain regularities.  相似文献   

3.
In 1982 we discovered a pulsar with the phenomenal rotation rate of 642 Hz, 20 times faster than the spin rate of the Crab pulsar. The absence of supernova debris in the vicinity of the pulsar at any wavelength indicates an age of the neutron star greater than 105 yr. The miniscule spindown rate of 1.1 × 10-19 confirms the old age and indicates a surface magnetic field of 109 G. A second millisecond pulsar was discovered by Boriakoff, Buccheri & Fauci (1983) in a 120-day orbit. These fast pulsars may have been spun-up by mass transfer in a close binary evolutionary stage. Arrival-time observations of the 642-Hz pulsar display remarkably low residuals over the first 14 months. The stability implied by these observations, 3 × 10-14, suggests that millisecond pulsars will provide the most accurate basis for terrestrial dynamical time. If so, the pulsar data will lead to improvements in the planetary ephemeris and to new searches for light-year scale gravitational waves. Many new searches for fast pulsars are under way since previous sky surveys excluded pulsars with spins above 60 Hz.  相似文献   

4.
We present an analysis of the variations seen in the dispersion measures (DMs) of 20-ms pulsars observed as part of the Parkes Pulsar Timing Array project. We carry out a statistically rigorous structure function analysis for each pulsar and show that the variations seen for most pulsars are consistent with those expected for an interstellar medium characterized by a Kolmogorov turbulence spectrum. The structure functions for PSRs J1045−4509 and J1909−3744 provide the first clear evidence for a large inner scale, possibly due to ion–neutral damping. We also show the effect of the solar wind on the DMs and show that the simple models presently implemented into pulsar timing packages cannot reliably correct for this effect. For the first time we clearly show how DM variations affect pulsar timing residuals and how they can be corrected in order to obtain the highest possible timing precision. Even with our presently limited data span, the residuals (and all parameters derived from the timing) for six of our pulsars have been significantly improved by correcting for the DM variations.  相似文献   

5.
国家天文台正在研制的50m射电望远镜将投入脉冲星观测与研究,推动我国的脉冲星工作。本文回顾了自第1颗脉冲星发现后35年来脉冲星观测取得的成果,和理论研究获得的重大进展,并讨论我国脉冲星工作可能开展的观测与研究。当今世界脉冲星观测与研究虽然还有许多遗留问题,但是作为中子星基本观测事实已被确认。脉冲星的应用也已经走上了历史舞台。如果利用50m射电望远镜对脉冲星的特殊活动现象进行观测与研究,可能获得突破性的进展。  相似文献   

6.
由单颗脉冲星定义的脉冲星时受多种噪声源的影响,其短期和长期稳定度都不够好.为了削弱这些噪声源对单脉冲星时的影响,可以采取合适的算法对多个单脉冲星时进行综合得到综合脉冲星时,从而提高综合脉冲星时的长期稳定度.文中介绍4种综合脉冲星时算法:经典加权算法、小波分析算法、维纳滤波算法和小波域中的维纳滤波算法,将这4种算法分别应用于Arecibo天文台对两颗毫秒脉冲星PSR B1855+09和PSRB1937+21观测得到的计时残差并作出比较.  相似文献   

7.
We present the results of a high-precision timing campaign directed at the binary millisecond pulsar J1600−3053. Submicrosecond pulsar timing has long been the domain of bright, low dispersion measure millisecond pulsars or large diameter telescopes. This experiment, conducted using the Parkes radio telescope in New South Wales, Australia, and utilizing the latest baseband recording hardware, has allowed this pulsar, although distant and faint, to present residuals to a model of its spin behaviour of 650 ns over a period of more than 2 yr. We have also constrained the orbital inclination via Shapiro delay to be between 59° and 70° to 95 per cent confidence and obtained a scintillation velocity measurement indicating a transverse velocity less than 84 km s−1. This pulsar is demonstrating remarkable stability comparable to, and in most cases improving upon, the very best long-term pulsar timing experiments. If this stability is maintained, the current limits on the energy density of the stochastic gravitational wave background will be reached in four more years.  相似文献   

8.
Efforts are made to understand the timing behaviors (e.g., the jumps in the projected pulsar semimajor axis at the periastron passages) observed in the 13-year monitoring of PSR B1259-63. Planet-like objects are suggested to orbit around the Be star, which may gravitationally perturb the (probably low mass) pulsar when it passes through periastron. An accretion disk should exist outside the pulsar's light cylinder, which creates a spindown torque on the pulsar due to the propeller effect. The observed negative braking index and the discrepant timing residuals close to periastron could be related to the existence of a disk with a varying accretion rate. A speculation is presented that the accretion rate may increase on a long timescale in order to explain the negative braking index.  相似文献   

9.
The computation of theoretical pulsar populations has been a major component of pulsar studies since the 1970s. However, the majority of pulsar population synthesis has only regarded isolated pulsar evolution. Those that have examined pulsar evolution within binary systems tend to either treat binary evolution poorly or evolve the pulsar population in an ad hoc manner. Thus, no complete and direct comparison with observations of the pulsar population within the Galactic disc has been possible to date. Described here is the first component of what will be a complete synthetic pulsar population survey code. This component is used to evolve both isolated and binary pulsars. Synthetic observational surveys can then be performed on this population for a variety of radio telescopes. The final tool used for completing this work will be a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Results provided here support the need for further (apparent) pulsar magnetic field decay during accretion, while they conversely suggest the need for a re-evaluation of the assumed typical millisecond pulsar formation process. Results also focus on reproducing the observed     diagram for Galactic pulsars and how this precludes short time-scales for standard pulsar exponential magnetic field decay. Finally, comparisons of bulk pulsar population characteristics are made to observations displaying the predictive power of this code, while we also show that under standard binary evolutionary assumption binary pulsars may accrete much mass.  相似文献   

10.
The analysis of observations of pulsar B1931+24 shows that the mechanism of the spin-down of a rotating magnetized neutron star is due to the plasma generation in its magnetosphere and, consequently, the radio emission generation. The unique observation of the switch on and switch off of this pulsar allows us to distinguish between the energy loss in the absence of radio emission (the magnetodipole radiation) and the current loss due to the rotation energy expenditure to the relativistic plasma generation and acceleration in the pulsar magnetosphere. The inclination angle χ, the angle between the rotation axis and the magnetic dipole axis, can be stationary for this pulsar,  χ=χst  . From observations and theory it follows that  χst= 59°  .  相似文献   

11.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

12.
We analyse different methods of searching for planets around neutron stars by timing observations of pulsars. To this end, we study a few interesting models describing TOA residual variations that are observed, or could be observed, and which can mimic planets. We carry out a detailed theoretical analysis of the behaviour of these methods in the situations mentioned. We show that it is very helpful to look at these phenomena as some kind of quasi-periodic variations of residuals of time of arrival of pulsar pulses. We demonstrate that such a model-independent approach leads to promising conclusions that can be useful when analysing timing observations of pulsars to find planets or to prove that observed phenomena are of planetary origin.  相似文献   

13.
Radio pulsars show remarkable clock-like stability, which make them useful astronomy tools in experiments to test equation of state of neutron stars and detecting gravitational waves using pulsar timing techniques. A brief review of relevant astrophysical experiments is provided in this paper highlighting the current state-of-the-art of these experiments. A program to monitor frequently glitching pulsars with Indian radio telescopes using high cadence observations is presented, with illustrations of glitches detected in this program, including the largest ever glitch in PSR B0531+21. An Indian initiative to discover sub-\(\mu \)Hz gravitational waves, called Indian Pulsar Timing Array (InPTA), is also described briefly, where time-of-arrival uncertainties and post-fit residuals of the order of \(\mu \)s are already achievable, comparable to other international pulsar timing array experiments. While timing the glitches and their recoveries are likely to provide constraints on the structure of neutron stars, InPTA will provide upper limits on sub-\(\mu \)Hz gravitational waves apart from auxiliary pulsar science. Future directions for these experiments are outlined.  相似文献   

14.
The pulsar time defined by a single pulsar is affected by many kinds of noise sources. Its short-term and long-term degrees of stability are both not good enough. In order to weaken the influence of these noise sources on the single pulsar time, an appropriate algorithm can be adopted to make a synthesis of many single pulsar times, then the ensemble pulsar time is obtained, thereby increasing the long-term degree of stability of the ensemble pulsar time. In this article four kinds of algorithms of the ensemble pulsar time are introduced, i.e., the classical weighting algorithm, wavelet analysis algorithm, Wiener filtering algorithm and Wiener filtering algorithm in wavelet domain. These four algorithms are respectively applied to the timing residuals obtained from the observation of two millisecond pulsars, PSR B1855+09 and PSR B1937+21 made at the Arecibo Astronomical Observatory, and comparisons are carried out.  相似文献   

15.
A method is suggested with which to explore the gravitational wave background (GWB) in the frequency range 10−12–10−8 Hz. This method is based on the precise measurements of pulsar rotational parameters: the influence of gravitational waves (GWs) in this frequency range will affect these parameters and therefore some conclusions about the energy density of the GWB can be made using analysis of the derivatives of pulsar rotational frequency. The calculated values of the second derivative from a number of pulsars limit the density of the GWB, Ωgw, as follows:  Ωgw < 2 × 10−6  . Also, the time series of the frequency ν of different pulsars in a pulsar array can be cross-correlated pairwise in the same manner as in anomalous residuals analysis, thus providing the possibility of GWB detection in the ultra-low-frequency range.  相似文献   

16.
Spectral analysis of the residual pulsearrival times of pulsars is a useful tool in understanding the nature of the underlying processes that may be responsible for the timing noise observed from pulsars. Power spectra of pulsar timing residuals may be described by one or a combination of powerlaws. As these spectra are expected to be very steep, it is important to ensure a high dynamic range in the estimation of the spectrum. This is difficult in practice since one is, in general, dealing with timing measurements made at unevenly placed epochs. In this paper, we present a technique based on, ‘CLEAN’ to obtain high dynamic range spectra from unevenly sampled data. We compare the performance of this technique with other techniques including some that were used earlier for estimation of power spectra of pulsar timing residuals.  相似文献   

17.
Stairs, Lyne & Shemar have found that the arrival-time residuals from PSR B1828−11 vary periodically with a period ≈500 d. This behaviour can be accounted for by precession of the radio pulsar, an interpretation that is reinforced by the detection of variations in its pulse profile on the same time-scale. Here, we model the period residuals from PSR B1828−11 in terms of precession of a triaxial rigid body. We include two contributions to the residuals: (i) the geometric effect, which arises because the times at which the pulsar emission beam points towards the observer varies with precession phase; and (ii) the spin-down contribution, which arises from any dependence of the spin-down torque acting on the pulsar on the angle between its spin     and magnetic     axes. We use the data to probe numerous properties of the pulsar, most notably its shape, and the dependence of its spin-down torque on     , for which we assume the sum of a spin-aligned component (with a weight  1 − a   ) and a dipolar component perpendicular to the magnetic beam axis (weight a ), rather than the vacuum dipole torque  ( a = 1)  . We find that a variety of shapes are consistent with the residuals, with a slight statistical preference for a prolate star. Moreover, a range of torque possibilities fit the data equally well, with no strong preference for the vacuum model. In the case of a prolate star, we find evidence for an angle-dependent spin-down torque. Our results show that the combination of geometrical and spin-down effects associated with precession can account for the principal features of the timing behaviour of PSR B1828−11, without fine tuning of the parameters.  相似文献   

18.
Space Very Long Baseline Interferometry observations of PSR 0329+54 which, by luck, occurred during an interstellar fringing event, are presented. Separate images of the pulsar were not detected. However, the pulsar was observed to be extended. The size of PSR 0329+54 during this event is1.88 × 1.67 mas with a position angle of 30° East of North. This could be due to two separate images of the pulsar separated byΔ θ ≲ 0.5 mas or angular broadening. The observed image size is larger than the expected angular broadening size of < 0.1 mas from the observations of Britton, Gwinn and Ojeda (1998). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A prolonged timing of millisecond pulsars has revealed low-frequency uncorrelated (infrared) noise, presumably of astrophysical origin, in the pulse arrival time (PAT) residuals for some of them. Currently available pulsar timing methods allow the statistical parameters of this noise to be reliably measured by decomposing the PAT residual function into orthogonal Fourier harmonics. In most cases, pulsars in globular clusters show a low-frequency modulation of their rotational phase and spin rate. The relativistic time delay of the pulsar signal in the curved spacetime of randomly distributed and moving globular cluster stars (the Shapiro effect) is suggested as a possible cause of this modulation. Extremely important (from an astrophysical point of view) information about the structure of the globular cluster core, which is inaccessible to study by other observational methods, could be obtained by analyzing the spectral parameters of the low-frequency noise caused by the Shapiro effect and attributable to the random passages of stars near the line of sight to the pulsar. Given the smallness of the aberration corrections that arise from the nonstationarity of the gravitational field of the randomly distributed ensemble of stars under consideration, a formula is derived for the Shapiro effect for a pulsar in a globular cluster. The derived formula is used to calculate the autocorrelation function of the low-frequency pulsar noise, the slope of its power spectrum, and the behavior of the σz statistic that characterizes the spectral properties of this noise in the form of a time function. The Shapiro effect under discussion is shown to manifest itself for large impact parameters as a low-frequency noise of the pulsar spin rate with a spectral index of n = −1.8 that depends weakly on the specific model distribution of stars in the globular cluster. For small impact parameters, the spectral index of the noise is n = −1.5.  相似文献   

20.
Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation, muon neutrinos are produced through the Δ-resonance in interactions of pulsar-accelerated ions with its thermal radiation field. High-energy gamma-rays should also be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here, we estimate TeV gamma-ray flux at the Earth from a few nearby young pulsars. When compared with the observations, we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect, we obtain the (revised) event rates at the Earth due to a few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma-ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号