首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 259 毫秒
1.
南海西沙海区5~6月份辐射通量研究--整体公式建立   总被引:4,自引:0,他引:4  
将南海西沙海区2000年5~6月海面辐射通量(包括太阳短波辐射、海面反射辐射、大气逆辐射和海面长波辐射)与云量、海温、气温、水汽压等气象要素进行了对比分析,发现它们之间存在一定的相关关系,利用这些关系建立了适合于计算南海西沙海区的太阳短波辐射、大气逆辐射、海面长波辐射和海面反照度的经验公式.分析结果表明,采用本文经验公式计算的各辐射通量值与实测资料的误差较一般常用经验公式的计算误差均有不同程度的减小,计算结果与实测结果在变化趋势上也具有较好的一致性.  相似文献   

2.
研究了海冰热力模式中的各种辐射参数化方案,对比了模式计算的太阳短波辐射、大气长波辐射以及海冰热力变化,并利用渤海和波罗的海观测资料进行比较和误差分析.冬季大部分时间太阳短波辐射对海冰热力过程的作用有限.简单计算方案一般满足海冰模式要求.误差主要受云和冰雪表面与大气之间的多重反射影响.长波辐射对表面热平衡和海冰质量变化起重要作用.长波辐射参数化方案的计算结果受环境因素影响.云量参数化有待进一步改进.海冰模式计算结果的精度与长波辐射计算精度有一致性.  相似文献   

3.
利用2006-2007年东海海区(120°E~128°E,26°N~31°N)的太阳辐射、常规气象和皮温等观测资料,分析太阳辐射季节变化特征,并讨论其与相关因子的关系;分析大气透过率与太阳高度角、总云量和相对湿度的关系,并进一步讨论海而反照率与太阳高度角、大气透过率和风的相关性.结果表明:东海海区辐射分量除向上短波辐射外,都表现出夏季最大,冬季最小的季节变化特征;大气透过率秋季最大,夏季最小;海面反照率秋季最大,春季最小.向下(上)短波辐射主要受太阳高度角和云量影响,向下长波辐射与气温、相对湿度的相关性较好,向上长波辐射与皮温的关系非常密切;大气透过率在少云时主要受太阳高度角影响,多云时主要受总云量影响,空气湿度的影响较弱;大气透过率变大时海面反照率减小;太阳高度角是影响海面反照率最主要的因素,且影响作用随着大气透过率的变大而增强,太阳高度角越大,海面反照率越小;风引起的海而粗糙度影响最弱,在太阳高度角较高、大气透过率较大时,风增大海面反照,卒的作用增强.  相似文献   

4.
20世纪后50年南海深水海盆SST持续增暖了0.64℃,为了探究其持续增暖的机制,使用IPCC模式比较试验CGCM3.1(T47)、CGCM3.1(T63)、CSIRO-Mk3.0、GFDL CM2.0这4个模式输出资料中的辐射通量、湍流热通量、比湿、风、云量、气温、海平面气压及海温数据,计算了各海洋、气象要素的变化趋势,估算了热通量各分量,发现20世纪后50年期间SST的持续增暖似乎不能依据海面热通量的变化来解释。主要证据如下:夏季风的减弱使得海面潜热减少了约4.9W/m2,但由于海温升高、蒸发加强又使潜热增多了大约同样的值,使得夏季南海深水海盆总的潜热通量变化较小;夏季大气水汽含量的增多促使海面长波辐射增多了约1.8 W/m2,加上感热通量等变化的效应,海洋净得热增多了约3.0 W/m2;但是,20世纪后50年内冬季风的增强和冬季海温升高致使海洋潜热增多了约7.3 W/m2。由于20世纪后50年潜热释放大于海面长波辐射增多,无法只用海面热通量解释SST持续增暖现象,指出了南海海洋动力过程可能在维持南海深水海盆50年来SST持续增暖中的重要性。  相似文献   

5.
利用实测的海洋气象资料研究了青岛沿海海气间能通量和水汽交换情况,分析了青岛沿海40a间(1961-2000)海面风应力、海-气热通量、水汽通量的大小以及时变特征。结果表明:青岛沿海风应力冬夏季大,春秋季小,6月和12月出现峰值,分别为2.9×10-3N/m2和5.8×10-3N/m2。海面净热通量全年呈单峰变化,7月份最大,为140.4W/m2;11月份最小,为-115.0W/m2;年平均海表净热通量为23.5W/m2。海面热量收支的季节分布特征是:海面吸收的太阳短波辐射夏季大、冬季小;海表有效辐射冬季大、夏季小;海-气潜热交换季节变化呈双峰分布,极大值出现在5月和9月;海-气感热交换受海气温差控制,冬季为正,热量由海洋传向大气,夏季为负,热量由大气传向海洋。受云量影响,海面吸收的太阳短波辐射从上世纪90年代以来有所增加;海-气潜热交换的年际变化显著,40a间变动范围达33.7W/m2。海-气净热通量的年际变化也很明显,40a间变动范围达41.7W/m2,且自80年代以来呈现上升的趋势。青岛沿海年平均蒸发量大于降水量,量值分别为888.0mm和677.2mm,年平均净水汽通量为-210.8mm;蒸发量的季节分布呈双峰变化,5月和9月达极大值;多年平均7,8两个月份降水多于蒸发,其余月份蒸发多于降水。  相似文献   

6.
南海北部海区太阳辐射观测分析与计算方法研究   总被引:9,自引:2,他引:7  
利用2000年与2002年南海海气通量观测资料及同期西沙站资料,研究分析了4-6月份南海北部海区太阳总辐射与云量以及日照时间等因子的对应关系.研究发现,日均太阳辐射与日总日照时间对应关系最好,依次是低云量、总云量.据此首先利用2000年资料建立了除考虑云量外还包括日总日照时间的计算日均太阳辐射的估计公式,并利用2002年观测资料进行独立检验.误差分析结果表明,包括日总日照时间的经验公式远优于单纯考虑云量的计算公式,误差减少了近50%.最后,应用该经验公式对观测期间缺测段资料进行了补插及外推估算,分析了2000年与2002年南海季风爆发前后太阳辐射的一些变化特征,估算结果表明,季风爆发前太阳辐射日均值缓慢增加并始终处于较高值.  相似文献   

7.
海表短波辐射收支是海–气界面能量交换的重要物理过程。本研究利用2019年南海北部夏季科考航次的走航观测数据,评估了ERA5再分析数据的海表短波辐射通量收支。结果表明,ERA5的向下短波辐射相比观测偏小,11时和15时(北京时间)的偏差最大,可达-100 W/m2。与此同时,ERA5的海表反照率整体偏低,其中高太阳高度角时段偏差较小,约为-0.03,低太阳高度角时段偏差较大,约为-0.15。向下短波辐射和反照率的偏差共同造成ERA5白天平均海表净短波辐射通量比观测偏小约25.4 W/m2;其中,反照率低估抵消了约50%向下短波辐射偏差的贡献。研究表明,在不同大气透射率情况下,ERA5的海表辐射收支偏差存在不同表现。ERA5海表反照率的低估可能与其采用的参数化方案在南海北部的适用性不足有关。基于观测本研究也给出了一个简单的参数优化方案。  相似文献   

8.
利用青岛市2003年8月~2011年8月的太阳辐射观测资料及常规气象地面观测资料,采用双标图分析、相关分析等统计方法,研究了地面太阳总辐射的变化特征及其影响因子。结果表明:青岛地面太阳总辐射呈现春季最大,夏秋季次之,冬季最小的季节变化特征;大气透射率夏季最小,其他3个季节相差不大。双标图分析及相关分析表明:总云量、能见度及相对湿度是辐射的主要影响因子,其中总云量对辐射变化起重要作用,能见度次之,相对湿度的影响最小。云对辐射有强的衰减作用,且低云的影响相对中高云大;实际大气中相对湿度和能见度对辐射的影响主要反映在两因子对云量的影响上,排除云的影响后相对湿度和能见度对辐射的衰减相对小,且不同云量条件下表现不同,云量较大时透射率随着相对湿度和能见度的变化较为明显。青岛地面太阳辐射受风向影响明显,盛行风为东南风的情况下,大气透射率较盛行风为西北风的情况下要小,且冬、春、秋3季节的大气透射率受风向影响大,夏季受风向影响小。  相似文献   

9.
用数值方法研宄穿透性太阳短波辐射对混合层深度的影响时,有些学者人为地设定了风速和热通量。这种做法可能会出现风速和热通量数值不匹配的问题。为了弥补这一缺陷,本文采用国内外常用的块体公式计算热通量的方法来代替人为设置,并以北太平洋为例,研究了穿透性太阳短波辐射对海洋混合层深度的影响。结果表明:低风速(U10<10m/s),且海表短波净辐射处于40~200 W/m2时,穿透性太阳短波辐射对混合层深度影响很显著;高风速(U10>10m/s)和短波净辐射高值区(S*(0)>200 W/m2),穿透性太阳短波辐射对混合层深度的影响较小。  相似文献   

10.
采用一维高分辨率大气边界层模式(OSUPBL),模拟了南海海面低层大气,得到高分辨率的海面低层大气的各种气象要素及界面通量和能量平衡关系,并将模拟结果和南海季风试验(SCSMEX)观测结果和日本气象厅(JMA)再分析资料进行对比分析.结果指出,OSUPBL模式模拟得到的海面大气边界层的风速、温、湿垂直廓线,大气边界层高度以及海表面短波辐射、长波辐射、感热、潜热通量、净辐射和海面热收支等与实际观测结果基本一致.  相似文献   

11.
Measurement results of downward longwave radiation (DLR) in a wavelength range of 3.5?C50 ??m are considered which have been obtained with the use of a precision IR radiometer (Eppley pyrgeometer) of the PIR model at the Meteorological Observatory of Moscow State University in 2008?C2010. The influence of air temperature and atmospheric moisture content on the DLR values has been analyzed; correlations between DLR and the above parameters have been found. The effect of clouds on DLR has been estimated: DLR increases by about 30% in daytime and by 25% in nighttime under overcast low clouds. The annual average DLR in Moscow is 305 W/m2, with a minimum in December?CMarch and a maximum in July?CAugust. Variations in DLR throughout a year can exceed 250 W/m2. The daily average amplitude is 18?C33 W/m2 in summer and 6?C13 W/m2 in winter. An increase in DLR by about 40 W/m2 is noted under conditions of haze from forest and peat-bog fires and an aerosol optical depth of about 4 at a wavelength of 500 nm.  相似文献   

12.
Observations of downward radiative flux at the sea surface generally contain uncertainty due to limited numbers of observations and limitations of auxiliary equipment. The lack of shading from direct solar radiation and ventilation systems causes bias or random errors. To evaluate the error of radiation measurements at buoys, downward shortwave and longwave radiative fluxes are compared with International Satellite Cloud Climatology Project (ISCCP), Japanese 55-year Reanalysis (JRA55), and Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved model calculations of 3-h and daytime averages. Cloud masking is evaluated by a combination of MTSAT-1R and in situ observations. Coincident observations from a land-surface station located near the buoy observatories are compared with satellite and reanalysis products. The bias at buoys, compared with retrievals, approximately over- and under-estimate for longwave and shortwave fluxes, respectively. The bias at buoys is larger and smaller than the land by 23–34 W m?2 for longwave and 13–51 W m?2 for shortwave radiation using 3-h averages under clear-sky conditions. The differences in bias decrease when using daytime averages for longwave, but the difference for shortwave increases with daytime averages. To evaluate the effect of environmental factors on buoy observations, we compared rainfall, wind speed, and solar zenith angle with the biases. We found that rainfall and wind speed affect buoy pyrgeometers such that they overestimate the longwave flux. The cosine of solar zenith angle does not cause overestimation for longwave flux, and the effect of dome heating is small. The strong wind causes underestimation of the shortwave radiative flux due to tilting. The effect of wind is reduced when daily averages are used.  相似文献   

13.
Long term in situ atmospheric observation of the landfast ice nearby Zhongshan Station in the Prydz Bay was performed from April to November 2016. The in situ observation, including the conventional meteorological elements and turbulent flux, enabled this study to evaluate the sea ice surface energy budget process. Using in situ observations, three different reanalysis datasets from the European Centre for Medium-Range Weather Forecasts Interim Re-analysis(ERA-Interim), National Centers for Environmental Prediction Reanalysis2(NCEP R2), and Japanese 55-year Reanalysis(JRA55), and the Los Alamos sea ice model, CICE, output for surface fluxes were evaluated. The observed sensible heat flux(SH) and net longwave radiation showed seasonal variation with increasing temperature. Air temperature rose from the middle of October as the solar elevation angle increased.The ice surface lost more energy by outgoing longwave radiation as temperature increased, while the shortwave radiation showed obvious increases from the middle of October. The oceanic heat flux demonstrated seasonal variation and decreased with time, where the average values were 21 W/m~2 and 11 W/m~2, before and after August,respectively. The comparisons with in situ observations show that, SH and LE(latent heat flux) of JRA55 dataset had the smallest bias and mean absolute error(MAE), and those of NCEP R2 data show the largest differences.The ERA-Interim dataset had the highest spatial resolution, but performance was modest with bias and MAE between JRA55 and NCEP R2 compare with in situ observation. The CICE results(SH and LE) were consistent with the observed data but did not demonstrate the amplitude of inner seasonal variation. The comparison revealed better shortwave and longwave radiation stimulation based on the ERA-Interim forcing in CICE than the radiation of ERA-Interim. The average sea ice temperature decreased in June and July and increased after September,which was similar to the temperature measured by buoys, with a bias and MAE of 0.9°C and 1.0°C, respectively.  相似文献   

14.
The present case study evaluates the downward longwave radiation at the surface (DLR) in several high‐resolution (≈1°) general circulation models (GCMs) using surface observations from a semiarid continental site in New South Wales, Australia (Uardry, 34.39°S, 142.30°E). This site is located on a large grassland plain uniform in both its land use and landcover type, and is therefore particularly well suited for a comparison with GCM grid mean values. Monthly averages of newly constructed clear‐sky and all‐sky DLR climatologies and the resulting cloud‐radiative forcing are compared. It is shown that the GCMs exceed the observed DLR under cloud‐free conditions by 10–20 W m−2 at this semiarid site on an annual basis, with a strong seasonal dependence. The calculated clear‐sky fluxes are overestimated during the warmer summer season, with large absolute values of DLR, while the biases are reduced in the colder and dryer winter season with smaller fluxes. This gives direct support for recent evidence that the DLR model biases depend systematically on the thermal and humidity structure of the cloudless atmosphere. Fluxes from strongly emitting atmospheres tend to be overestimated, but may be underestimated from atmospheres with smaller emission. This points to common problems inherent in the simulation of the emission from the cloudless atmosphere in current longwave radiation codes.
The comparisons of the all‐sky climatologies at Uardry show that the clear‐sky biases are partly masked in the models with an insufficient cloud‐radiative forcing, thereby counterbalancing the excessive DLR of the cloud‐free atmosphere. On the other hand, when the cloudradiative forcing is improved, the biases in the cloud‐free atmosphere become fully apparent in the all‐sky fluxes.  相似文献   

15.
林龙  赵进平 《海洋学报》2018,40(11):23-32
雪热传导系数是海冰质量平衡过程中的重要物理参数,决定了穿透海冰的热传导通量。北冰洋海冰质量平衡浮标观测获得多年冰上冬季温度链剖面可以明显地区分冰雪界面。本文考虑到冰雪界面处温度随时间变化,再根据冰雪界面热传导通量连续假定,提出了新的雪热传导系数计算方法。受不同环境因素影响,多年冰上各个浮标的雪热传导系数在0.23~0.41 W/(m·K)之间,均值为(0.32±0.08) W/(m·K)。北冰洋多年冰上冬季穿过海冰的热传导通量最大发生在11月至翌年3月,约14~16 W/m2。结冰季节,来自海冰自身降温的热量对穿过海冰向大气传输的热量贡献逐月减少,从9月100%减小到12月的35%,翌年的1月至3月稳定在10%左右。夏季,短波辐射通能量通过热传导自上而下加热海冰,海冰上层温度高于下层,热量传播方向与冬季反向,往海冰内部传递。直到9月短波辐射完全消失,气温下降,热量再次转变为自下往上传递。从冰底热传导来看,夏季出现海冰向冰水界面传递热量现象。由于雪较好的绝热性,冰上覆雪极大地削弱了海冰上层热传导通量,从而减缓了秋冬季节的结冰速度。尽管受雪厚影响,多年冰上层热传导通量与气温依旧具有很好的线性关系,气温每降低1℃,热传导通量增加约0.59 W/m2。  相似文献   

16.
The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.  相似文献   

17.
Temperature and radiation effects of the 2010 summer fires are estimated on the basis of measurements at the Zvenigorod Scientific Station (ZSS) of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (RAS), in the Moscow region. The surface air temperature during the 2010 summer smoke varied in antiphase with the aerosol mass concentration, and the thermal radiation balance in the surface layer of the atmosphere varied in phase. Under extreme smoke of the surface layer in August 2010, the reduction in surface air temperature at ZSS has been found to reach 4 K with an increase in the downward flux of thermal radiation by an average of 20 W/m2 and a decrease in the difference between upward and downward fluxes of thermal radiation by an average of 24 W/m2.  相似文献   

18.
A dual channel difference (DCD) method is applied to detect nighttime sea fog/stratus over the Huanghai Sea using the infrared (IR) data of shortwave (3.5–4.0 μm) and longwave (10.3–11.3 μm) channels from the Multi-functional Transport Satellite (MTSAT)-1R, i.e., shortwave minus longwave brightness temperature difference (SLTD). Twenty-four sea fog events over the Huanghai Sea during March to July of 2006 and 2007 are chosen to determine a suitable value of SLTD for nighttime sea fog/stratus detection, and ...  相似文献   

19.
To assess the performances of state-of-the-art global climate models on simulating the Arctic clouds and surface radiation balance, the 2001–2014 Arctic Basin surface radiation budget, clouds, and the cloud radiative effects(CREs) in 22 coupled model intercomparison project 6(CMIP6) models are evaluated against satellite observations. For the results from CMIP6 multi-model mean, cloud fraction(CF) peaks in autumn and is lowest in winter and spring, consistent with that from three satellite observation products(Cloud Sat-CALIPSO, CERESMODIS, and APP-x). Simulated CF also shows consistent spatial patterns with those in observations. However,almost all models overestimate the CF amount throughout the year when compared to CERES-MODIS and APP-x.On average, clouds warm the surface of the Arctic Basin mainly via the longwave(LW) radiation cloud warming effect in winter. Simulated surface energy loss of LW is less than that in CERES-EBAF observation, while the net surface shortwave(SW) flux is underestimated. The biases may result from the stronger cloud LW warming effect and SW cooling effect from the overestimated CF by the models. These two biases compensate each other,yielding similar net surface radiation flux between model output(3.0 W/m~2) and CERES-EBAF observation(6.1 W/m~2). During 2001–2014, significant increasing trend of spring CF is found in the multi-model mean,consistent with previous studies based on surface and satellite observations. Although most of the 22 CMIP6 models show common seasonal cycles of CF and liquid water path/ice water path(LWP/IWP), large inter-model spreads exist in the amounts of CF and LWP/IWP throughout the year, indicating the influences of different cloud parameterization schemes used in different models. Cloud Feedback Model Intercomparison Project(CFMIP)observation simulator package(COSP) is a great tool to accurately assess the performance of climate models on simulating clouds. More intuitive and credible evaluation results can be obtained based on the COSP model output. In the future, with the release of more COSP output of CMIP6 models, it is expected that those inter-model spreads and the model-observation biases can be substantially reduced. Longer term active satellite observations are also necessary to evaluate models' cloud simulations and to further explore the role of clouds in the rapid Arctic climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号