首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kohistan Sequence has been considered as island arc formed during the subduction of oceanic lithosphere at the leading edge of northward moving Indian continent.. Sedimentary sequences indicate that formation of the intra\|oceanic Kohistan arc began in early Cretaceous time. The isotopic data demonstrate the involvement of enriched, DUPAL type mantle, suggesting that Kohistan arc was formed at or south of the present equator (Khan et al., 1997). The Intra oceanic phase of Kohistan lasted until sometime between 102 and 85 Ma, when Kohistan collided with Asia. From this time until collision with India about 50 Ma ago, Kohistan existed as Andean\|type margin. This paleomagnetic study is from the volcanic and plutonic rocks exposed in Gupis\|Shamran area (west of Gilgit) in northern part of the Kohistan arc. According to geochronological data these rocks were formed 61~55Ma ago (Treloar et al., 1989), when Kohistan was existing as Andean\|type margin. Seven to nine samples were collected from nine sites of Shamran volcanics (58±1)Ma and from five sites of Pingal, Gupis, and Yasin plutons (Ar\|Ar hornblende ages ranges from 61~52Ma). On the basis of one Rb\|Sr age of (59±2)Ma from these plutons, the above\|mentioned Ar/Ar ages may be regarded as reasonable intrusion ages of these plutons (Searle, 1991).  相似文献   

2.
A sample of banded amphibolite from the western margin of the Nanga Parbat–Haramosh Massif as Sassi has been studied using microstructural and 40Ar/39Ar laserprobe techniques to investigate the relationship between deformation and argon isotope variations in a natural system. Amphibolite-grade deformation occurred during south-directed overthrusting of the Kohistan arc over India along the Main Mantle Thrust and was overprinted by extensional reactivation of the earlier fabric and the formation of biotite-rich shear zones. Subsequent deformation along discrete fine-grained fault zones was characterised by the formation of scapolite, chlorite and K-feldspar, early plastic deformation and later cataclasis. Different minerals developed during this history show a wide range in apparent 40Ar/39Ar ages. Biotite, chlorite and scapolite exhibit much lower concentrations of excess argon, indicating their equilibration in a fluid relatively poor in excess argon. A `true' age of ca. 8 Ma from biotite represents a minimum age for deformation associated with formation of the Nanga Parbat Syntaxis and also precludes Pliocene metamorphism in this area of the syntaxis. Both high- and low-closure temperature minerals (amphiboles and feldspars) record apparent ages which are associated with the incorporation of excess argon within the mineral lattice. Although differential thermal resetting of minerals at different closure temperatures is important, variations in the inherited 40Ar/36Ar ratio throughout the sample is dominated by deformation and fluid infiltration. Consequently it appears that within deforming metamorphic rocks, areas with significantly different argon isotope compositions may be present and need not be homogenised by diffusion. Received: 6 July 1994 / Accepted: 24 December 1996  相似文献   

3.
We report the following new40Ar/39Ar ages: 130–150 and 90–100 Ma from monzodiorite and tremolite-actinolite schist of the Kohistan Complex; 44±0.5, 39.7±0.2 Ma from dikes cutting the Ladakh-Deosai Batholith Complex; 130–145 Ma from a diorite in the Shyok melange; and 7.8±0.1 Ma from a late stage monzogranite of the Kärakorum Batholith. A 261±13 Ma age from gneiss of the Karakorum Batholith is of uncertain significance. These dates, previously published ones which we summarize here, and some Sr isotope data suggest the following, (due to subduction switching between the Indian and Asian margins during closing of the Tethys ocean): Late Cretaceous emplacement of the Dras-Kohistan Cretaceous Island arc, followed by rapid cooling between abut 85 and 45 Ma. A quiet phase tectonically on the northern Indian plate during the Palaeocene to early Eocene, when subduction was occurring on the Asian margin. Further southward thrusting of the Indian continental margin associated with the development of an Andean-type arc (the Ladakh-Desosai Batholiths) on the northern Indian margin during the Eocene. An Oligocene Andean arc (the Karakorum Batholiths) on the Asian margin, followed by Miocene collision of the two continents and intrusion of ‘true’ granites derived from partial melting of continental crust.  相似文献   

4.
The Tertiary collision-related thermal history of the NW Himalaya   总被引:3,自引:0,他引:3  
Garnet‐whole rock Sm‐Nd data are presented for several samples from the Indian plate in the NW Himalaya. These dates, when combined with the P‐T evolution of the Indian plate rocks, allow a thorough reconstruction of the prograde thermal evolution of this region (including the Nanga Parbat Haramosh Massif) during the early Cenozoic. Combining these data with Rb‐Sr mineral separate ages, enables us to constrain the post‐peak cooling history of this region of the Himalaya. The data presented here indicate that the upper structural levels of the cover rocks of the Nanga Parbat Haramosh Massif, and similar rocks in the Kaghan Valley to the south‐west, were buried to pressures of c. 10 kbar and heated to temperatures of c. 650 °C at 46–41 Ma. The burial of the lower structural levels of the cover rocks of the Nanga Parbat Haramosh Massif, to similar depths but at higher temperatures of c. 700 °C, occurred slightly later at 40–36 Ma, synchronous with the imbrication and exhumation of the amphibolite‐ and eclogite‐grade rocks of the Kaghan Valley. In contrast, the cover rocks of the Nanga Parbat Haramosh Massif were not imbricated or exhumed at this time, remaining buried beneath the Kohistan‐Ladakh Island Arc until the syntaxis‐forming event that occurred in the last 10 Myr. The timing of tectonic events in the north‐western Himalaya differs from that experienced by the rocks of the Central Himalaya in that the earliest stage of burial in the NW Himalaya predates that of the Central Himalaya by c. 6 Myr. This difference may result from the diachronous nature of the Indo‐Asian collision or may simply be a reflection of differing timing at different structural levels.  相似文献   

5.
The Greater Himalayan Sequence (GHS) has commonly been treated as a large coherently deforming high‐grade tectonic package, exhumed primarily by simultaneous thrust‐ and normal‐sense shearing on its bounding structures and erosion along its frontal exposure. A new paradigm, developed over the past decade, suggests that the GHS is not a single high‐grade lithotectonic unit, but consists of in‐sequence thrust sheets. In this study, we examine this concept in central Nepal by integrating temperaturetime (T–t) paths, based on coupled Zr‐in‐titanite thermometry and U–Pb geochronology for upper GHS calcsilicates, with traditional thermobarometry, textural relationships and field mapping. Peak Zr‐in‐titanite temperatures are 760–850°C at 10–13 kbar, and U–Pb ages of titanite range from c. 30 to c. 15 Ma. Sector zoning of Zr and distribution of U–Pb ages within titanite suggest that diffusion rates of Zr and Pb are slower than experimentally determined rates, and these systems remain unaffected into the lower granulite facies. Two types of T–t paths occur across the Chame Shear Zone (CSZ). Between c. 25 and 17–16 Ma, hangingwall rocks cool at rates of 1–10°C/Ma, while footwall rocks heat at rates of 1–10°C/Ma. Over the same interval, temperatures increase structurally upwards through the hangingwall, but by 17–16 Ma temperatures converge. In contrast, temperatures decrease upwards in footwall rocks at all times. While the footwall is interpreted as an intact, structurally upright section, the thermometric inversion within the hangingwall suggests thrusting of hotter rocks over colder from c. 25 to c. 17–16 Ma. Retrograde hydration that is restricted to the hangingwall, and a lithological repetition of orthogneiss are consistent with thrust‐sense shear on the CSZ. The CSZ is structurally higher than previously identified intra‐GHS thrusts in central Nepal, and thrusting duration was 3–6 Ma longer than proposed for other intra‐GHS thrusts in this region. Cooling rates for both the hangingwall and footwall of the CSZ are comparable to or faster than rates for other intra‐GHS thrust sheets in Nepal. The overlap in high‐T titanite U–Pb ages and previously published muscovite 40Ar/39Ar cooling ages imply cooling rates for the hangingwall of ≥200°C/Ma after thrusting. Causes of rapid cooling include passive exhumation driven by a combination of duplexing in the Lesser Himalayan Sequence, and juxtaposition of cooler rocks on top of the GHS by the STDS. Normal‐sense displacement does not appear to affect T–t paths for rocks immediately below the STDS prior to 17–16 Ma.  相似文献   

6.
High‐pressure (HP) metabasites from the Sancti Spiritus dome (Escambray massif, Central Cuba) have been studied in order to better understand the origin and evolution of the Northern Caribbean boundary plate during the Cretaceous, in a global subduction context. Geochemical and petrological studies of these eclogites reveal two groups with contrasting origins and pre‐subduction metamorphic histories. Eclogites collected from exotic blocks within serpentinite (mélange zone) originated from a N‐MORB type protolith, do not record pre‐eclogitic metamorphic history. Conversely eclogites intercalated in Jurassic metasedimentary rocks (non‐mélange zone) have a calc‐alkaline arc‐like origin and yield evidence for a pre‐subduction metamorphic event in the amphibolite facies. However, all the studied Escambray eclogites underwent the same eclogitic peak (around 600 °C at 16 kbar), and followed a cold thermal gradient during their exhumation (estimated at around 13.5 °C km?1), which can suggest that this exhumation was coeval with subduction. Concordant geochronological data (Rb/Sr and Ar/Ar) support that the main exhumation of HP/LT rocks from the Sancti Spiritus dome occurred at 70 Ma by top to SW thrusting. The retrograde trajectory of these rocks suggests that the north‐east subduction of the Farallon plate continued after 70 Ma. The set‐off to the exhumation can be correlated with the beginning of the collision between the Bahamas platform and the Cretaceous island arc that induced a change of the subduction kinematics. The contrasting origin and ante‐subduction history of the analysed samples imply that the Escambray massif consists of different geological units that evolved in different environments before their amalgamation during exhumation to form the present unit III of the massif.  相似文献   

7.
New petrographic and microstructural observations, mineral equilibria modelling and U/Pb (monazite) geochronological studies were carried out to investigate the relationships between deformation and metamorphism across the Rehamna massif (Moroccan Variscan belt). In this area, typical Barrovian (muscovite to staurolite) zones developed in Cambrian to Carboniferous metasedimentary rocks that are distributed around a dome‐like structure. First assemblages are characterized by the presence of locally preserved andalusite, followed by prograde evolution culminating at 6 kbar and 620 °C in the structurally deepest staurolite zone rocks. This Barrovian sequence was subsequently uplifted to supracrustal levels, heterogeneously reworked at greenschist facies conditions, which was followed locally by static growth of andalusite, indicating heating to 2.5–4 kbar and 530–570 °C. The 206Pb/238U monazite age of 298.3 ± 4.1 Ma is interpreted as minimum age of peak metamorphic conditions, whereas the ages of 275.8 ± 1.7 Ma and 277.0 ± 1.1 Ma date decompression and heating at low pressure, in agreement with previous dating of Permian granitoids intruding the Rehamna massif. The prograde metamorphism occurred during thickening and associated horizontal flow in the deeper crust (S1 horizontal schistosity). The horizontally disposed metamorphic zones were subsequently uplifted by a regional scale antiform during ongoing N–S compression. The re‐heating of the massif follows late massive E–W shortening, refolding and retrograde shearing of all previous fabrics coevally with regionally important intrusions of Permian granitoids. We argue that metamorphic evolution of the Rehamna massif occurred several hundred kilometres from the convergent plate boundaries in the interior of continental Gondwanan plate. The tectonometamorphic history of the Rehamna massif is put into Palaeozoic plate tectonic perspective and Late Carboniferous reactivation of (Devonian)–Early Carboniferous basins formed during stretching of the north Gondwana margin and formation of the Palaeotethys Ocean. The inherited heat budget of these magma‐rich basins plays a role in the preferential location of this intracontinental orogen. It is shown that rapid transition from lithospheric stretching to compression is characterized by specific HT type of Barrovian metamorphism, which markedly differs from similar Barrovian sequences along Palaeozoic plate boundaries reported from Variscan Europe.  相似文献   

8.
New eclogite localities and new 40Ar/39Ar ages within the Western Gneiss Region of Norway define three discrete ultrahigh‐pressure (UHP) domains that are separated by distinctly lower pressure, eclogite facies rocks. The sizes of the UHP domains range from c. 2500 to 100 km2; if the UHP culminations are part of a continuous sheet at depth, the Western Gneiss Region UHP terrane has minimum dimensions of c. 165 × 50 × 5 km. 40Ar/39Ar mica and K‐feldspar ages show that this outcrop pattern is the result of gentle regional‐scale folding younger than 380 Ma, and possibly 335 Ma. The UHP and intervening high‐pressure (HP) domains are composed of eclogite‐bearing orthogneiss basement overlain by eclogite‐bearing allochthons. The allochthons are dominated by garnet amphibolite and pelitic schist with minor quartzite, carbonate, calc‐silicate, peridotite, and eclogite. Sm/Nd core and rim ages of 992 and 894 Ma from a 15‐cm garnet indicate local preservation of Precambrian metamorphism within the allochthons. Metapelites within the allochthons indicate near‐isothermal decompression following (U)HP metamorphism: they record upper amphibolite facies recrystallization at 12–17 kbar and c. 750 °C during exhumation from mantle depths, followed by a low‐pressure sillimanite + cordierite overprint at c. 5 kbar and c. 750 °C. New 40Ar/39Ar hornblende ages of 402 Ma document that this decompression from eclogite‐facies conditions at 410–405 Ma to mid‐crustal depths occurred in a few million years. The short timescale and consistently high temperatures imply adiabatic exhumation of a UHP body with minimum dimensions of 20–30 km. 40Ar/39Ar muscovite ages of 397–380 Ma show that this extreme heat advection was followed by rapid cooling (c. 30 °C Myr?1), perhaps because of continued tectonic unroofing.  相似文献   

9.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   

10.
New phase equilibrium modelling, combined with U–Th/Pb petrochronology on monazite and xenotime, and 40Ar/39Ar geochronology on white mica, reveal the style of deformation and metamorphism near the southern tip of the extruded Himalayan metamorphic core (HMC). In the Jajarkot klippe, west Nepal foreland, greenschist to lower amphibolite facies metamorphism is entirely constrained to the Cenozoic Himalayan orogeny, in contrast with findings from other foreland klippen in the central Himalaya. HMC rocks exposed in the Jajarkot klippe yield short‐lived, hairpin pressure–temperature–time–deformation paths that peaked at 550–600°C and 750–1,200 MPa at 25 Ma. The Main Central thrust (MCT) and the South Tibetan detachment (STD) bound the base and the top of the HMC, respectively, and were active simultaneously for at least part of their deformation history. The STD was active at c. 27–26 Ma and possibly as late as c. 19 Ma, while the MCT may have been active as early as 27 Ma and was still active at c. 22 Ma. The tectonometamorphic conditions in the Jajarkot klippe are characteristic of crustal thickening and footwall accretion of new material at the tip of the extruding metamorphic orogenic core. Our new results reveal that collisional processes active in the middle to late Miocene at the base of the HMC now exposed in the hinterland were also active earlier, during the Oligocene, at the tip of the southward‐extruding middle crust.  相似文献   

11.
The Veporic basement and its Permian-Mesozoic cover experienced medium-pressure, collision-related metamorphism during the Cretaceous. Geothermobarometric calculations of Alpine mineral assemblages indicate peak conditions of 8–12 kbar and 550–600°C in the deepest-exposed basement, and up to 8 kbar and 450–500°C in the Permian metasediments. After having reached the metamorphic peak conditions (at around 110 Ma, 40Ar/39Ar on amphiboles), the thermally softened Veporic unit was exhumed probably due to the underplating of a buoyant Tatric-Fatric crust. Exhumation was triggered by extensional denudation of former upper-crustal thrust units, overlying the Veporic unit. Unroofing was accomplished due to orogenparallel, top-to-east extension along low-angle, ductile normal shear zones. The area collapsed and rapidly cooled at 90-80 Ma (40Ar/39Ar on micas). As revealed by the structural record, the doming and tectonic exhumation of the Veporic core occurred in an overall contractional regime and was followed by additional Late Cretaceous—Early Tertiary shortening events.  相似文献   

12.
Four polymetamorphic complexes in the vicinity of regional faults in the Trans-Angarian region of the Yenisey Ridge were studied to determine their metamorphic evolution and to elucidate distinctive features of the regional geodynamic processes. Based on our geological and petrological studies using geothermobarometry and P–T path calculations, we show that a Neoproterozoic medium-pressure metamorphism of the kyanite-sillimanite type at c. 850 Ma overprinted regionally metamorphosed low-pressure andalusite-bearing rocks. A positive correlation between rock ages and P–T estimates for the kyanite-sillimanite metamorphism provides evidence for regional structural and tectonic heterogeneity. The medium-pressure recrystallization was characterized by (1) localized distribution of metamorphic zones in the area directly underlying thrust faults with a measured thickness of 2.5–8 km; (2) syntectonic formation of kyanite-bearing mineral assemblages related to thrusting; (3) gradual increase in metamorphic pressure towards the thrust faults associated with a low metamorphic field gradient (from 1–7 to 12°C/km); and (4) equally steep burial P–T paths recorded for the highest grade rocks. These specific features are typical of collisional metamorphism during overthrusting of continental blocks and are evidence of near-isothermal loading in accordance with the transient emplacement of thrust sheets. The proposed model for tectono-metamorphic evolution of the study areas due to crustal thickening at high thrusting rates and subsequent rapid exhumation explains these tectonic features. Data analysis allowed us to consider the medium-pressure kyanite-bearing metapelites as a product of collisional metamorphism, reflecting unidirectional thrusting of Siberian cratonal blocks onto Yenisey Ridge along regional deep faults (Angara, Mayakon, and Chapa areas) and by opposite movements in the zone of secondary splay faults (Garevka area).  相似文献   

13.
羌塘中部高压变质带的退变质作用及其构造侵位   总被引:6,自引:1,他引:5  
董永胜  李才  施建荣  王生云 《岩石学报》2009,25(9):2303-2309
羌塘中部的高压变质带主要由榴辉岩、石榴石白云母片岩和蓝片岩等组成,它们在遭受高压变质作用之后折返,构造侵位于晚古生代展金组地层中,二者以韧性变形带为接触边界.本文以高压变质带中的榴辉岩和韧性变形带为研究对象,讨论了高压变质带折返过程中的退变质作用特征及折返时代.研究表明,榴辉岩在高峰期变质作用之后的折返过程中经历了由榴辉岩相→蓝片岩相→绿帘角闪岩相的退变质作用演化过程;在高压变质带构造侵位过程形成的韧性变形带中,白云母石英片岩的白云母40Ar-39Ar坪年龄为219±2Ma.高压变质带在219Ma左右构造侵位于展金组地层中,并于214Ma之前最终抬升出露地表.  相似文献   

14.
The Central Anatolian Crystalline Complex (CACC) is a microcontinent in the Alpine–Himalayan belt. It has previously been considered as a coherent structural entity, but, although the entire CACC is comprised of similar rocks (primarily metasedimentary rocks and granitoids), it consists of at least four tectonic blocks characterized by different PTt paths. These blocks are the K?r?ehir (north‐west), Akda? (north‐east), Ni?de (south) and Aksaray (west) massifs. The northern massifs experienced thrusting and folding during collision and were slowly exhumed by erosion; metamorphic rocks are characterized by clockwise PT paths at moderate PT and local low‐P–high‐T (LP–HT) overprinting in the highest grade rocks. Apatite fission track ages are Eocene to Oligocene (47–32 Ma). The Aksaray block represents the hot, shallow mid‐crust of a Late Cretaceous–early Tertiary arc. It is dominated by intrusions; rare metapelitic rocks record low‐P (< 4 kbar) regional metamorphism overprinted by LP–HT contact metamorphism. Apatite fission track ages are 50–45 Ma. The Ni?de massif is different from the other CACC blocks because it evolved as a core complex in a wrench‐dominated setting. It is characterized by clockwise PT paths at moderate PT followed by widespread LP–HT metamorphism. Apatite fission track ages are Miocene (12–9 Ma), significantly younger than those in the northern massifs. Ni?de rocks resided in the mid‐crust at a time when the rest of the CACC was at or near the Earth's surface. Variations in PTt and tectonic histories — especially timing of exhumation — between the northern and southern CACC reflect the difference between head‐on collision vs. mid‐crustal wrenching.  相似文献   

15.
We describe, date and constrain the P–T conditions of a syntectonic inverted metamorphic sequence associated with continental collision and crustal‐scale thrusting in one of the key regions of the late Palaeozoic Variscan belt of Western Europe – the Champtoceaux Complex (Armorican Massif, France), interpreted as a trace of the Variscan suture zone between Laurussia and Gondwana. The Complex consists of several stacked units, some of them eclogite‐bearing, that are sandwiched between two main pieces of continental crust – the Parautochthon and the Upper Allochthon. Moderately to steeply dipping foliation parallels the main lithological boundaries. From the bottom to the top of the metamorphic rock pile, the following sequence testifies to the syntectonic temperature increase: chlorite–biotite‐bearing metagreywackes (Parautochthon); orthogneisses with eclogite lenses; micaschists with chloritoid–chlorite–garnet; orthogneisses; micaschists with staurolite–biotite–garnet with chloritoid inclusions (Lower Allochthon); and migmatites with boudins of eclogite and kyanite–biotite–garnet‐bearing metapelitic lenses (Upper Allochthon). Mylonitic amphibolites with lenses of serpentinized peridotite mark the boundary between the Lower Allochthon and the overlying Upper Allochthon, suggesting the presence of a major thrust. It is inferred that the latter is responsible for the development of the inverted metamorphic zoning. Multiequilibrium thermobarometry and pseudosections calculated with thermocalc indicate that equilibration temperatures of the syntectonic peak metamorphic assemblages increase upwards in the rock pile from <500 °C in the Parautochthon to >650 °C in the Upper Allochthon. All units equilibrated at similar pressures between 7 and 10 kbar. In the Upper Allochthon, chronological results on muscovite suggest initial cooling from c. 343 Ma (muscovite Rb–Sr) to c. 337 Ma (muscovite 40Ar–39Ar). A subsequent very rapid temperature decrease is suggested by the synchronous closure of the muscovite and biotite K–Ar and biotite Rb–Sr isotopic systems (c. 337–335 Ma). This cooling is also recorded in the Upper Micaschists of the Lower Allochthon and in the Parautochthon with muscovite 40Ar–39Ar ages of c. 336–334 and 332 Ma, respectively. Ages of c. 343 Ma inferred from disturbed muscovite spectra from the Parautochthon are possibly linked to a previous higher pressure metamorphic event in this unit. It is suggested that the development of the inverted metamorphic zoning in the Champtoceaux Complex is due to the emplacement of a hot nappe over colder units and is contemporaneous with major crustal thrusting and associated pervasive ductile deformation. The preservation of this inverted field gradient was possible because of fast cooling, tentatively associated with the syn‐compressional denudation of the tectonic pile, expressed by the detachment at the top of the nappe pile. The efficiency of cooling is best shown by the near‐coincidence of Rb–Sr and 40Ar–39Ar ages, obtained on both sides of the major thrust. Finally, we highlight similarities with other regions of the West‐European Variscan belt (Iberian massif, French Massif Central) and suggest that inverted metamorphic zoning is systematically associated with the contact between the Lower and Upper Allochthons.  相似文献   

16.
Vertical displacements on the SW–NE Têt fault (Eastern Pyrenees Axial Zone, France), which separates the Variscan Canigou-Carança and Mont-Louis massifs, were constrained using a thermochronologic multi-method approach. 40Ar/39Ar data from the granitic Mont-Louis massif record its Variscan cooling history and reveal no ages younger than Early Cretaceous, while the Canigou-Carança gneiss massif records systematically younger 40Ar/39Ar ages. These younger 40Ar/39Ar ages in the Canigou-Carança gneiss massif are the result of partial to total rejuvenation of argon isotopic systems related to a thermal flow coeval with the Cretaceous HT-BP metamorphism in the North Pyrenean Zone. Only the deepest rocks from the Canigou-Carança suffered this extensive Mid-Cretaceous thermal overprint probably due to differential burial around 4 km at that time. The post Mid-Cretaceous vertical displacements along the Têt fault are recorded by “low” temperature thermochronology using K-feldspar 40Ar/39Ar, zircon and apatite fission track and (U–Th)/He datings. The Mont-Louis granite samples experienced a long period of protracted cooling reflecting a lack of thermo-tectonic activity in this area from Late Palaeozoic to Early Cenozoic, followed by cooling from 55–60 Ma to Late Eocene at a mean rate of 15–20°C/Ma in the final stage. This cooling stage corresponds to Têt fault reactivation with a reversed component, promoting exhumation of the Mont-Louis roof zone contemporaneously with the south-vergent Pyrenean thrusting. In the Canigou-Carança massif, the main cooling event occurred from 32 to 18 Ma at a maximum rate of 30°C/Ma during Early Oligocene followed by a more moderate rate of 3°C/Ma from Late Oligocene to Early Burdigalian, coeval with the normal reactivation of the Têt fault in brittle conditions that accommodated the final exhumation of the massif during the opening of the Gulf of Lion.  相似文献   

17.
Abstract 40Ar/39Ar age spectrum analysis of phengite separates from Naxos, part of the Attic Cycladic Metamorphic Belt in Greece, indicates that cooling following high-pressure, low- to medium-temperature metamorphism, M1, occurred about 50 Ma ago. Phengite has 40Ar* gradients that suggest that part of the scatter observed in conventional K–Ar ages was caused by diffusion of radiogenic argon from the minerals during a younger metamorphism, M2. In central Naxos, this metamorphism (M2) has overprinted the original mineral assemblages completely, and is associated with development of a thermal dome. Excellent 40Ar/39Ar plateaus at 15.0 ± 0.1 Ma, 11.8 ± 0.1 Ma, and 11.4 ± 0.1 Ma, obtained on hornblende, muscovite and biotite, respectively, from the migmatite zone, indicate that relatively rapid cooling followed the M2 event, and that no significant thermal overprinting occurred subsequent to M2. Toward lower M2 metamorphic grade, 40Ar/39Ar plateau ages of hornblendes increase to 19.8 ± 0.1 Ma; concomitantly the proportion of excess 40Ar in the spectra increases as well. We propose that the peak of M2 metamorphism occurred beween 15.0 and 19.8 Ma ago. K–Ar ages of biotites from a granodiorite on the west coast are indistinguishable from those found in the metamorphic complex, and hornblende K–Ar ages from the same samples are in the range 12.1–13.6 Ma. As the latter ages are somewhat younger than most ages obtained from the metamorphic complex, intrusion of the granodiorite most likely followed the peak of the M2 metamorphism. The metamorphic evolution of Naxos is consistent with rapid crustal thickening during the Cretaceous or early Tertiary, causing conditions at which supracrustal rocks experienced pressures in the range 900–1500 MPa. Transition to normal crustal thicknesses ended the M1 metamorphism about 50 Ma ago. The M2 metamorphism and granodiorite intrusion occurred during a period of heat input into the crust, possibly related to the migration of the Hellenic volcanic ar°C in a southerly direction through the area.  相似文献   

18.
A phengite-talc-chloritoid-chlorite-kyanite-quartz assemblage is reported from a nearly undeformed quartz-rich metapelite found in the Monte Rosa massif (Western Alps). Chloritoid contains up to 74 mol % of the Mg end member and is the most magnesian ever reported. Textural relationships and mineral compositions suggest equilibrium and therefore a low-variance assemblage which represents the high-pressure stability limit of chlorite+quartz according to the terminal reaction $${\text{chlorite + quartz }} \rightleftarrows {\text{ talc + chloritoid + kyanite + H}}_{\text{2}} {\text{O}}{\text{.}}$$ Mineral compositions combined with new experimental data on the stability of the Mg-chloritoid end member lead, for a temperature close to 500° C, to a pressure estimate of 16 kbar and a water activity of 0.6 which is supported by fluid inclusions study. Chloritoid composition is in fact a fine metamorphic indicator which opens new ways for barometry in high-grade blueschists. It demonstrates here the existence of a high-pressure metamorphism in the Monte Rosa massif. The assemblage remained mineralogically unaffected during the subsequent lower-pressure evolution. Two size fractions of the single phengite generation were analysed by the 39Ar-40Ar incremental release method. Both spectra are identical with a plateau at 110±3 Ma representing over 96% of the 39Ar degassed. The ages of the first heating steps are discordant and increase with increasing temperature from values near 70 Ma to the plateau age. Isotope correlation diagrams show two 36Ar components, one released at high temperature and correlated with 40Ar and 39Ar, the other released at low temperature in a mixture of atmospheric argon and of a loosely held argon of 70 Ma apparent age. The 110 Ma plateau age may reflect the presence of homogeneously incorporated excess argon, the 70 Ma value might then be a true age. However we favour the alternative hypothesis that the 110 Ma plateau age is a true age, implying that the internal crystalline massifs of the Western Alps have endured high-pressure metamorphism as early as mid-Cretaceous. Whatever the interpretation chosen, the preserved high-pressure mineral assemblage remained isotopically unaffected during the low-pressure mid-Tertiary event which is recorded by the 37 Ma plateau age of phengite from a foliated, recrystallised quartzite collected in the same, westernmost part of the massif. The contrasting behaviour of the two samples shows that even at temperatures as high as 400–450° C deformation and recrystallisation are also major controlling factors of isotope mobility.  相似文献   

19.
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW–SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW–SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE–WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480–525 °C at 2–4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660–580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle–ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement along transcurrent shear zones and low angle normal ductile shear zones and consequently, development and exhumation of Sibai core complex.  相似文献   

20.
One‐dimensional thermal (1DT) modelling of an Acadian (Devonian) tectonothermal regime in southern Vermont, USA, used measured metamorphic pressures and temperatures and estimated metamorphic cooling ages based on published thermobarometric and geochronological studies to constrain thermal and tectonic input parameters. The area modelled lies within the Vermont Sequence of the Acadian orogen and includes: (i) a western domain containing garnet‐grade pre‐Silurian metasedimentary and metavolcanic rocks from the eastern flank of an Acadian composite dome structure (Rayponda–Sadawga Dome); and (ii) an eastern domain containing similar, but staurolite‐ or kyanite‐grade, rocks from the western flank of a second dome structure (Athens Dome), approximately 10 km farther east. Using reasonable input parameters based on regional geological, petrological and geochronological constraints, the thermal modelling produced plausible PT paths, and temperature–time (T t) and pressure–time (Pt) curves. Information extracted from PT t modelling includes values of maximum temperature and pressure on the PT paths, pressure at maximum temperature, predicted Ar closure ages for hornblende, muscovite and K‐feldspar, and integrated exhumation and cooling rates for segments of the cooling history. The results from thermal modelling are consistent with independently obtained pressure, temperature and Ar cooling age data on regional metamorphism in southern Vermont. Modelling results provide some important bounding limits on the physical conditions during regional metamorphism, and indicate that the pressure contemporaneous with the attainment of peak temperature was probably as much as 2.5 kbar lower than the actual maximum pressure experienced by rocks along various particle paths. In addition, differences in peak metamorphic grade (garnet‐grade versus staurolite‐grade or kyanite‐grade) and peak temperature for rocks initially loaded to similar crustal depths, differences in calculated exhumation rates, and differences in 40Ar/39Ar closure ages are likely to have been consequences of variations in the duration of isobaric heating (or ‘crustal residence periods’) and tectonic unroofing rates. Modelling results are consistent with a regional structural model that suggests west to east younging of specific Acadian deformational events, and therefore diachroneity of attainment of peak metamorphic conditions and subsequent 40Ar/39Ar closure during cooling. Modelling is consistent with the proposition that regional variations in timing and peak conditions of metamorphism are the result of the variable depths to which rocks were loaded by an eastward‐thickening thrust‐nappe pile rooted to the east (New Hampshire Sequence), as well as by diachronous structural processes within the lower plate rocks of the Vermont Sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号