首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of structural damage identification using harmonic excitation force is presented. It considers the effects of both measurement and modelling errors in the baseline finite element model. Damage that accompanies changes in structural parameters can be estimated for a damaged structure from the change between measured vibration responses and ones calculated from the analytical model of the intact structure. In practice, modelling errors exist in the analytical model due to material and geometric uncertainties and a reduction in the degrees of freedom as well as measurement errors, making identification difficult. To surmount these problems, bootstrap hypothesis testing, which enables statistical judgment without information about these errors, was introduced. The method was validated by numerical simulation using a three‐dimensional frame structure and real vibration data for a three‐storey steel frame structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A bridge health monitoring system is presented based on vibration measurements collected from a network of acceleration sensors. Sophisticated structural identification methods, combining information from the sensor network with the theoretical information built into a finite element model for simulating bridge behavior, are incorporated into the system in order to monitor structural condition, track structural changes and identify the location, type and extent of damage. This work starts with a brief overview of the modal and model identification algorithms and software incorporated into the monitoring system and then presents details on a Bayesian inference framework for the identification of the location and the severity of damage using measured modal characteristics. The methodology for damage detection combines the information contained in a set of measurement modal data with the information provided by a family of competitive, parameterized, finite element model classes simulating plausible damage scenarios in the structure. The effectiveness of the damage detection algorithm is demonstrated and validated using simulated modal data from an instrumented R/C bridge of the Egnatia Odos motorway, as well as using experimental vibration data from a laboratory small-scaled bridge section.  相似文献   

3.
基于响应面的预应力混凝土桥动力有限元模型研究   总被引:1,自引:0,他引:1  
朱彤  殷广庆 《地震学刊》2013,(6):644-650
建立了基于正交实验的响应面模型和精细有限元模型,并将其用于中华大桥的有限元模型修正,通过实测动力数据对修正后的有限元模型计算结果进行了验证。基于修正后的有限元模型,分析了预应力对预应力钢筋混凝土桥梁模态信息(频率和振型)的影响,以及单元类型对桥梁模态频率的影响。结果表明,修正后的有限元模型能够比较准确地反映桥梁实际结构的动力特性,基于响应面模型和遗传算法的修正方法可有效地用于大桥的健康监测和状态评估;预应力对预应力钢筋混凝土桥梁模态信息的影响较小,建模时可不予精确考虑;对于由多根预应力混凝土梁组成的桥梁体系,采用实体单元分析较好。  相似文献   

4.
Partial‐strength composite steel–concrete moment‐resisting (MR) frame structures represent an open research field in seismic design from both a theoretical and an experimental standpoint. Among experimental techniques, vibration testing is a well‐known and powerful technique for damage detection, localization and quantification, where actual modal parameters of a structure at different states can be determined from test data by using system identification methods. However, the identification of semi‐rigid connections in framed structures is limited, and hence this paper focuses on a series of vibration experiments that were carried out on a realistic MR frame structure, following the application of pseudo‐dynamic and quasi‐static cyclic loadings at the European laboratory for structural assessment of the Joint Research Centre at Ispra, Italy, with the scope of understanding the structural behaviour and identifying changes in the dynamic response. From the forced vibration response, natural frequencies, damping ratios, modal displacements and rotations were extracted using the circle fitting technique. These modal parameters were used for local and global damage identification by updating a 3D finite element model of the intact structure. The identified results were then correlated with observations performed on the structure to understand further the underlying damage mechanisms. Finally, the latin hypercube sampling technique, a variant of the Monte Carlo method, was employed in order to study the sensitivity of the updated parameters of the 3D model to noise on the modal inputs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
基于模态曲率法的大跨度斜拉桥损伤识别   总被引:2,自引:0,他引:2  
大跨度斜拉桥是重要的交通结构,研究其在主梁损伤条件下的损伤定位问题具有重要的工程价值。合理选择设计参数并对其进行敏感性分析,根据现场实测的桥梁动力特性数据,通过调整选定的设计参数对初始的有限元模型进行修正。在基准有限元模型的基础上,通过模拟不同位置和不同程度的主梁损伤,探讨了模态曲率法对结构损伤识别的有效性。结果表明,模态曲率法能够对大跨斜拉桥进行初步的损伤定位,确定主梁单处损伤和多处损伤的损伤位置;对于单处损伤,在噪声水平3%的情况下仍具有较好的适用性。从而为后期更为精确的桥梁结构损伤检测提供依据。  相似文献   

6.
多层及高层框架结构地震损伤诊断的神经网络方法   总被引:12,自引:4,他引:12  
本文提出了强震后多层及高层框架结构地震损伤诊断的神经网络方法。文中在提出有结点损伤的梁柱有限元刚度矩阵的基础上,建立了有结点损伤框架结构的有限元模型。通过完好结构和有损伤结构的有限元分析,获取二者应变模态差值作为损伤标识量,并输入径向基(RBF)神经网络进行训练,得到了框架结构结点损伤诊断的神经网络系统。数值仿真分析结果表明,此神经网络可以对多层及高层框架结构结点各种程度的损伤做出成功诊断。  相似文献   

7.
In this study, we determine an updated finite element model of a reinforced concrete building—which was damaged from shaking during 1994 Northridge earthquake—using forced‐vibration test data and a novel model‐updating technique. Developed and verified in the companion paper (viz. BVLSrc, Earthquake Eng. Struct. Dyn. 2006; this issue), this iterative technique incorporates novel sensitivity‐based relative constraints to avoid ill conditioning that results from spatial incompleteness of measured data. We used frequency response functions and natural frequencies as input for the model‐updating problem. These data were extracted from measurements obtained during a white‐noise excitation applied at the roof of the building using a linear inertial shaker. Flexural stiffness values of properly grouped structural members, modal damping ratios, and translational and rotational mass values were chosen as the updating parameters, so that the converged results had direct physical interpretations, and thus, comparisons with common parameters used in seismic design and evaluation of buildings could be made. We investigated the veracity of the updated finite element model by comparing the predicted and measured dynamic responses under a second, and different type of forced (sine‐sweep) vibration, test. These results indicate that the updated model replicates the dynamic behaviour of the building reasonably well. Furthermore, the updated stiffness factors appear to be well correlated with the observed building damage patterns (i.e. their location and severity). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
祝叶  罗凡 《地震工程学报》2018,40(5):976-982
当前地震记录法检测中强震下砌体结构损伤时,基于已知砌体结构地震动记录实施损伤检测存在较高的局限性。提出新的中强震下砌体结构损伤检测方法,利用DASP动态测试分析仪和891型的压电式位移传感器,检测拟静力试验后的砌体结构模型,采用参数互补校正方法得到受损砌体结构的自振频率和振型检测,通过有限元分析获取砌体结构位移,依据频率和位移采用信号匹配方法检测砌体结构损伤情况,根据墙体刚度变化检测中强震下砌体结构的损伤程度。实验证明所提方法可对中强震下砌体结构损伤情况进行准确检测。  相似文献   

9.
The problem of identification of the modal parameters of a structural model using measured ambient response time histories is addressed. A Bayesian spectral density approach (BSDA) for modal updating is presented which uses the statistical properties of a spectral density estimator to obtain not only the optimal values of the updated modal parameters but also their associated uncertainties by calculating the posterior joint probability distribution of these parameters. Calculation of the uncertainties of the identified modal parameters is very important if one plans to proceed with the updating of a theoretical finite element model based on modal estimates. It is found that the updated PDF of the modal parameters can be well approximated by a Gaussian distribution centred at the optimal parameters at which the posterior PDF is maximized. Examples using simulated data are presented to illustrate the proposed method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
采用ABAQUS建立12层剪力墙结构的有限元模型,利用该结构1/5缩尺模型振动台试验时预留试块的材性试验结果及相似关系,确定相应原型结构材料的性能参数,将试验参数和我国混凝土结构设计规范给出的混凝土单轴受拉/压应力-应变关系曲线相结合,确定ABAQUS模型中混凝土损伤塑性模型所需的应力-应变参数;将试验参数和张劲公式法相结合,确定ABAQUS模型中混凝土损伤塑性模型所需的损伤因子参数。对比有限元分析结果和振动台试验结果,验证参数设置的有效性。ABAQUS有限元分析和振动台试验所得原型结构前三阶振型和自振周期相差很小,说明ABAQUS模型和参数设置能够反映并用于计算实际结构的弹性响应。ABAQUS有限元分析得到的结构损伤情况与试验模型的损伤情况基本一致;结构的顶点加速度曲线和滞回曲线等响应的有限元分析结果与试验结果在多遇地震作用下基本吻合,但由于振动台试验累积损伤的影响,两者的差异随着地震波幅值的增大而逐渐增大;ABAQUS有限元分析得到的位移包络曲线与剪力墙结构弯曲变形的特点相符。以上弹塑性分析结果进一步表明了ABAQUS模型和参数设置能够很好地模拟结构在地震作用下的响应。  相似文献   

11.
This paper presents a method for evaluating the residual structural capacity of earthquake‐affected steel structures. The method first quantifies the damage severity of a beam by computing the dynamic‐strain‐based damage index. Next, the model used to analyze the structure is updated based on the damage index, to reflect the observed damage conditions. The residual structural capacity is then estimated in terms of changes in stiffness and strength, which can be applied by structural engineers, via a nonlinear static analysis of the updated model. The main contributions of this paper are in performance evaluation of the dynamic‐strain‐based damage index for seismically induced damage using a newly developed substructure testing environment, consideration of various damage patterns in composite beams, and extension of a local damage evaluation technique to a residual capacity estimation procedure by incorporating the model‐updating technique. In laboratory testing, the specimens were damaged quasi‐statically, and vibration tests were conducted as the damage proceeded. First, a bare steel beam–column connection was tested, and then a similar one with a floor slab was used for a more realistic case. The estimated residual structural capacities for these specimens were compared with the static test results. The results verified that the proposed method can provide fine estimates of the stiffness and strength deteriorations within 10% for the specimen without the floor slab and within 30% for that with the floor slab. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
选取1 000MW大型火力发电厂新型混合结构主厂房体系的三跨三榀进行缩尺比为1/7的空间模型试验研究.采用锤击法测试模型结构的动力特性,得到其自振频率和振型,并根据相似关系换算到原型结构.使用SAP2000软件建立混合结构主厂房模型和原型结构的有限元模型,进行模态分析,得到模型和原型结构的频率和振型,并与试验结果进行对比分析.可为大型火力发电厂新型混合结构主厂房体系的抗震性能研究提供依据.  相似文献   

13.
This paper presents a finite element (FE) model updating procedure applied to complex structures using an eigenvalue sensitivity‐based updating approach. The objective of the model updating is to reduce the difference between the calculated and the measured frequencies. The method is based on the first‐order Taylor‐series expansion of the eigenvalues with respect to some structural parameters selected to be adjusted. These parameters are assumed to be bounded by some prescribed regions which are determined according to the degrees of uncertainty that exist in the parameters. The changes of these parameters are found iteratively by solving a constrained optimization problem. The improvement of the current study is in the use of an objective function that is the sum of a weighted frequency error norm and a weighted perturbation norm of the parameters. Two weighting matrices are introduced to provide flexibility for individual tuning of frequency errors and parameters' perturbations. The proposed method is applied to a 1/150 scaled suspension bridge model. Using 11 measured frequencies as reference, the FE model is updated by adjusting ten selected structural parameters. The final updated FE model for the suspension bridge model is able to produce natural frequencies in close agreement with the measured ones. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This study focuses on the use of strong motion data recorded during earthquakes and aftershocks to provide a preliminary assessment of the structural integrity and possible damage in bridges. A system identification technique is used to determine dynamical characteristics and high‐fidelity first‐order linear models of a bridge from low level earthquake excitations. A finite element model is developed and updated using a genetic algorithm optimization scheme to match the frequencies identified and to simulate data from a damaging earthquake for the bridge. Here, two criteria are used to determine the state of the structure. The first criteria uses the error between the data recorded or simulated by the calibrated nonlinear finite element model and the data predicted by the linear model. The second criteria compares relative displacements of the structure with displacement thresholds identified using a pushover analysis. The use of this technique can provide an almost immediate, yet reliable, assessment of the structural health of an instrumented bridge after a seismic event. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
本文提出巨型框筒部分悬挂结构新体系,研究这种结构体系对地震反应特性,提出用阻尼器进行巨型框筒部分悬挂体系地震反应的控制方法,采用结构动力学有限元方法,建立空间分析模型,对结构体系进行地震随机振动分析、时程分析和地震反应谱分析。分析结果表明,这种结构体系能有效地减小结构的地震响应,最后研究了影响控制效果的主要因素及控制器参数的影响规律。  相似文献   

16.
Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety evaluation. In this regard, appropriate data analysis and feature extraction techniques are required to interpret the measured data and to identify the state of the structure and, if possible, to detect the damage. In this study, the recursive subspace identification with Bona‐fide LQ renewing algorithm (RSI‐BonaFide‐Oblique) incorporated with moving window technique is utilized to identify modal parameters such as natural frequencies, damping ratios, and mode shapes at each instant of time during the strong earthquake excitation. From which the least square stiffness method (LSSM) combined with the model updating technique, called efficient model correction method (EMCM), is used to estimate the first‐stage system stiffness matrix using the simplified model from the previously identified modal parameters (nominal model). In the second stage, 2 different damage assessment algorithms related to the nominal system stiffness matrix were derived. First, the model updating technique, called EMCM, is applied to correct the nominal model by the newly identified modal parameters during the strong motion. Second, the element damage index can be calculated using element damage index method (EDIM) to quantify the damage extent in each element. Verification of the proposed methods through the shaking table test data of 2 different types of structures and a building earthquake response data is demonstrated to specify its corresponding damage location, the time of occurrence during the excitation, and the percentage of stiffness reduction.  相似文献   

17.
计算连续震动下钢筋混凝土建筑的壁板结构破坏程度需要对大量数据进行回归计算,不能快速、有效地确定壁板承载力,因此提出一种新型钢筋混凝土建筑在连续震动下的壁板结构破坏程度分析方法。通过确定混凝土建筑材料、钢筋材料、壁板截面与单元材料等属性参数,完成钢筋混凝土壁板结构有限元建模;通过对连续震动下破坏壁板结构的内、外力分析,确定壁板结构总体破坏程度。设计对比实验结果表明,应用新型壁板结构破坏程度分析方法能有效确定壁板抗剪承载力和抗弯承载力,避免因壁板结构失去支撑力,而造成建筑损坏现象发生。  相似文献   

18.
A method based on empirical-mode decomposition (EMD) and vector autoregressive moving average (VARMA) model is proposed for structural damage detection. The basic idea of the method is that the structural damages can be identified as the abrupt changes in energy distribution of structural responses at high frequencies. Using the time-varying VARMA model to represent the intrinsic mode functions (IMFs) obtained from the EMD of vibration signal, we define a damage index according to the VARMA coefficients. In the two examples given, the Imperial County Services Building and the Van Nuys hotel are used as the benchmark structures to verify the effectiveness and sensitivity of the damage index in real environments with the presence of actual noise. The analysis results show that the damage index can indicate the occurrence and relative severity of structural damages at multiple locations in an efficient manner. The damage index can also be potentially used for structural health monitoring, since it is based on the time-varying VARMA coefficients. Finally, some recommendations for future research are provided.  相似文献   

19.
Hybrid simulation is a powerful and cost‐effective simulation technique to evaluate structural dynamic performance. However, it is sometimes rather difficult to guarantee all the boundaries on the physical substructures, especially when the boundary conditions are very complex, due to limited laboratory resources. Lacking of boundary conditions is bound to change the stress state of the structure and eventually result in an inaccurate evaluation of structural performance. A model updating‐based online numerical simulation method is proposed in this paper to tackle the problem of incomplete boundary conditions. In the proposed method, 2 sets of finite element models with the same constitutive model are set up for the overall analysis of the whole structure and the constitutive model parameter estimation of the physical substructure, respectively. The boundary conditions are naturally satisfied because the response is calculated from the overall structural model, and the accuracy is improved as the material constitutive parameters are updated. The effectiveness of the proposed method is validated via numerical simulations and actual hybrid tests on a RC frame structure, and the results show that the negative effect of incomplete boundary conditions is almost eliminated and the accuracy of hybrid simulation is very much improved.  相似文献   

20.
现役古建木结构普遍存在残损现象,这将影响结构的抗震性能。本文以北京故宫的咸福宫西配殿为研究对象,通过简化其屋顶、斗拱、榫卯和柱脚节点建立结构的理想模型,并在此基础上考虑材料老化和节点性能降低等因素建立其残损现状模型。通过地震易损性分析,得到古建木结构的地震易损性曲线并进行理想和残损结构的震害等级及其发生概率对比。研究结果表明:残损现象降低了咸福宫西配殿的刚度和自振频率;相比于理想结构,咸福宫西配殿残损结构在小震作用下发生轻微损坏的概率增大21.1%,在中震作用下发生中等破坏的概率增大3.7%,大震作用下发生严重破坏的概率增大10.6%;咸福宫西配殿在大震作用下发生倒塌的概率很小,体现了木结构具有良好的抗震性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号