首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴忠铁  张轲 《地震工程学报》2022,44(6):1251-1259,1286
为研究装配式木柱与钢筋混凝土混合结构梁柱柔性节点的非线性力学性能,设计一种木柱与钢筋混凝土混合结构装配节点.利用 ABAQUS软件建立有限元模型,并对节点模型进行单调加载荷载分析和低周反复加载分析,主要研究橡胶硬度和竖向荷载对装配节点的破坏特征、滞回曲线、骨架曲线、承载力及耗能能力等非线性力学性能的影响,并与相关文献对比,验证分析方法的可行性.结果表明:该柔性节点的主要破坏模式有柱脚受压屈曲、受拉抬起现象和橡胶压缩变形破坏.柔性装配节点的承载力、刚度、延性与其阻尼材料的硬度二者呈正比关系.随着阻尼材料硬度提高,可以有效限制柱体侧倾和柱脚抬起现象.当采用71HA 硬度的橡胶材料时其耗能能力较好.同时,竖向荷载对装配节点的阻尼比影响较大,增加竖向荷载可以有效提高该节点的黏滞阻尼比.  相似文献   

2.
Earthquake‐resilient steel frames, such as self‐centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade, but little attention has been paid to their column bases. The paper presents a rocking damage‐free steel column base, which uses post‐tensioned high‐strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post‐tensioning in the post‐tensioned bars. A step‐by‐step design procedure is presented, which ensures damage‐free behavior, self‐centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in abaqus . The results of the FE simulations validate the accuracy of the moment–rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees . Comparisons among the OpenSees and abaqus models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self‐centering moment‐resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminates the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion and, thus, ignores 3D rocking effects such as biaxial bending deformations in the friction devices. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
The rocking response of a rigid, freestanding block in two dimensions typically assumes perfect contact at the base of the block with instantaneous impacts at two distinct, symmetric rocking points. This paper extends the classical two‐dimensional rocking model to account for an arbitrary number of rocking points at the base representing geometric interface defects. The equations of motion of this modified rocking system are derived and presented in general terms. Energy dissipation is modeled assuming instantaneous point impacts, yielding a discrete angular velocity adjustment. Whereas this factor is always less than unity in the classical model, it is possible for this factor to exceed unity in the presented model, yielding a finite increase in the angular velocity at impact and a markedly different rotational response than the classical model predicts. The derived model and the classical model are numerically integrated and compared to the results of recent shake table tests. These comparisons show that the new model significantly enhances agreement in both peak angular displacement and motion decay. The equations of motion and the energy dissipation of the presented model are further investigated parametrically considering the size of the defect, the number of rocking points, and the aspect ratio and size of the block.  相似文献   

4.
The dynamic behaviour of systems consisting of two blocks, one placed on the top of the other, and free to rock without sliding, is examined in this analysis. The equations of motion for each ‘mode’ of vibration are derived and criteria for the initiation of rocking and the transition between modes are given. During vibration, the system continuously changes from one mode to another and this makes the response non-linear. This transition may be accompanied by impact, in which case dissipation of energy occurs, the amount of which depends on the relative velocities and the dimensions of the blocks. Also, redistribution of the kinetic energy of the system in the blocks happens. In most cases, the fractional contribution from the upper block to the system energy increases, which results in a larger and longer response of the top block, compared to the vibration of the lower one.  相似文献   

5.
为克服利用OpenSEES进行预制拼装桥墩纤维模型分析时干接缝区域模拟困难的问题,提出一种由刚性单元、非线性梁柱单元、零长度单元配合ENT单压材料组成的干接缝单元。通过基于干接缝单元的纤维模型数值模拟结果与文献中的1:3.5缩尺桥墩拟静力试验结果对比发现:该干接缝单元不仅解决了墩身混凝土压溃带来的模型不收敛问题,而且考虑了墩身节段宽度对干接缝区域的影响,使预制拼装桥墩干接缝处的力学性能更接近实际的力学性能;数值模拟结果与试验结果吻合较好证明了该干接缝单元用于模拟预制拼装桥墩干接缝区域的可行性。在此基础上设置耗能钢筋、外包钢管和墩底橡胶支承垫层作为桥墩附加耗能装置,对预制拼装桥墩进行拟静力循环加载模拟,研究不同耗能装置对预制拼装桥墩的滞回能力、预应力筋内力、累积耗能、残余位移以及等效刚度等性能参数的影响。结果表明:设置耗能钢筋和外包钢管可以显著提高预制拼装桥墩的耗能能力、水平承载力和刚度,降低预应力损失;设置墩底橡胶支承垫层也能提高预制拼装桥墩的耗能能力,但会降低桥墩的水平承载力和刚度,应根据桥墩自身刚度谨慎选择橡胶垫层的刚度。  相似文献   

6.
Existing unreinforced masonry buildings frequently suffer out-of-plane local collapse mechanisms when undergoing earthquake ground motion. The energy damping that occurs during the motion, due to impacts of a wall against the foundation or against other walls, is a relevant parameter on the response. An experimental investigation has been carried out to estimate the dissipation of kinetic energy that takes place during free oscillations. Restraint conditions allow for two-sided rocking (wall resting on a foundation) and one-sided rocking (wall resting on a foundation adjacent to transverse walls). Five specimens have been tested, modelling walls acted out-of-plane (fa?ades). When one-sided rocking is under consideration, different depths of the contact surface between fa?ade and transverse walls are considered. In the case of two-sided rocking, the experimental coefficient of restitution is slightly lower than the analytic coefficient. In the case of one-sided rocking, an analytic formulation is proposed and this is compared against experimental data. Although the coefficient of restitution of one-sided rocking is less than half that of two-sided rocking, it is not equal to zero. Thus, it cannot induce a sudden stop of the motion. Hence, nonlinear time history analyses performed under this assumption may prove unsafe. Moreover, a comparison has been carried out between overturning maps, induced by twenty natural accelerograms, computed for the analytic coefficient of restitution and those computed for the experimental coefficient of restitution. The increased energy dissipation reduces the frequency of overturning and causes a more regular behaviour.  相似文献   

7.
This paper presents new results of centrifuge model tests exploring the behavior of rocking shallow foundations embedded in dry sand, which provides a variety of factors of safety for vertical bearing. The results of slow (quasi‐static) cyclic tests of rocking shear walls and dynamic shaking tests of single‐column rocking bridge models are presented. The moment–rotation and settlement–rotation relationships of rocking footings are investigated. Concrete pads were placed in the ground soil to support some models with the objective of reducing the settlement induced by rocking. The behavior of rocking foundation was shown to be sensitive to the geometric factor of safety with respect to bearing failure, Lf/Lc, where Lf was the footing length, and the Lc was the critical soil‐footing contact length that would be required to support pure axial loading. Settlements were shown to be small if Lf/Lc was reasonably large. Placement of concrete pads under the edges of the footing was shown to be a promising approach to reduce settlements resulting from rocking, if settlements were deemed to be excessive and also had impacts on the energy dissipation and rocking moment capacity. A general discussion of the tradeoffs between energy dissipation and re‐centering of rocking foundations and other devices is included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
为研究金属橡胶材料用作土木工程结构消能减震阻尼器的力学性能,本文针对不同成型密度的金属橡胶阻尼元件,分别在静力、动力荷载作用下进行了压缩性能试验,测试加载幅值、循环加载次数、元件成型密度、动力加载频率等因素对金属橡胶元件阻尼耗能的影响规律。研究结果表明,金属橡胶材料有着良好的弹性和阻尼特性,其滞变耗能能力随着成型密度、加载幅值的增加而增大;加载频率和加载次数对金属橡胶滞变性能几乎没有影响。  相似文献   

9.
The present work investigates the influence of small geometrical defects on the behavior of slender rigid blocks. A comprehensive experimental campaign was carried out on one of the shake tables of CEA/Saclay in France. The tested model was a massive steel block with standard manufacturing quality. Release, free oscillations tests as well as shake table tests revealed a non‐negligible out‐of‐plane motion even in the case of apparently plane initial conditions or excitations. This motion exhibits a highly reproducible part for a short duration that was used to calibrate a numerical geometrically asymmetrical model. The stability of this model when subjected to 2000 artificial seismic horizontal bidirectional signals was compared with the stability of a symmetrical one. This study showed that the geometrical imperfections slightly increase the rocking and overturning probabilities for earthquake signals in a narrow range of peak ground acceleration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The highly complex rocking response of free-standing statues atop multi-drum columns underground excitation resulting in insuperable difficulties for obtaining reliable solution is reexamined analytically. This is achieved after simulating the columns by monolithic viscoelastic cantilevers having structural damping, based on experiments, equivalent to the energy dissipation due to impact and sliding of multi-drum columns. Subsequently, the conditions of rocking (overturning) instability of free-standing rigid blocks (representing the statues) after their uplift from the top surface of the laterally vibrating cantilevers, are established, including overturning with or without impact. Attention focuses on the minimum amplitude ground acceleration which leads to an escaped motion through the vanishing of the angular velocity and acceleration. Maximization of such a minimum amplitude (implying stabilization) of the rigid block is obtained by seeking the optimum combination of values of the slenderness ratio of the column and its height. Analytically derived results based on linearised analyses are in excellent agreement with those obtained via nonlinear numerical analyses.  相似文献   

11.
在混凝土空心砌块的空腔中填入橡胶砂形成的组合砌块(RSMCB)可作为简易隔震层应用于村镇建筑防震减灾。建立RSMCB的三维数值分析模型,进行循环剪切试验以及隔震分析,研究不同橡胶砂配比、竖向压应力、盖板尺寸和盖板埋深对隔震砌块动刚度和阻尼比的影响,分析不同的上部配重、输入地震波、橡胶砂配比、盖板尺寸和铺设方式对RSMCB垫层隔震效果的影响。结果表明:(1)橡胶砂芯组合砌块应变软化现象明显。(2)RSMCB的水平动刚度随橡胶砂配比增大而减小,随盖板埋深、盖板尺寸以及竖向压应力的增大而增大。(3)阻尼比随橡胶砂配比、竖向压应力、盖板尺寸和埋深的增大而减小,橡胶砂芯组合砌块隔震消能效果显著。在隔震数值模拟中,输入加速度在经过橡胶砂芯组合砌块垫层过滤后均有不同程度的降低,且被过滤掉大部分高频波。隔震效应随着盖板尺寸的增大而减小,上部结构配重越大,隔震效应越明显,橡胶砂配比为30%时RSMCB垫层隔震效应更好。橡胶砂芯组合砌块符合在村镇欠发达地区低成本隔震的要求,表现出广阔的应用前景。  相似文献   

12.
Though rocking shallow foundations could be designed to possess many desirable characteristics such as energy dissipation, isolation, and self-centering, current seismic design codes often avoid nonlinear behavior of soil and energy dissipation beneath foundations. This paper compares the effectiveness of energy dissipation in foundation soil (during rocking) with the effectiveness of structural energy dissipation devices during seismic loading. Numerical simulations were carried out to systematically study the seismic energy dissipation in structural elements and passive controlled energy dissipation devices inserted into the structure. The numerical model was validated using shaking table experimental results on model frame structures with and without energy dissipation devices. The energy dissipation in the structure, drift ratio, and the force and displacement demands on the structure are compared with energy dissipation characteristics of rocking shallow foundations as observed in centrifuge experiments, where shallow foundations were allowed to rock on dry sandy soil stratum during dynamic loading. For the structures with energy dissipating devices, about 70–90% of the seismic input energy is dissipated by energy dissipating devices, while foundation rocking dissipates about 30–90% of the total seismic input energy in foundation soil (depending on the static factor of safety). Results indicate that, if properly designed (with reliable capacity and tolerable settlements), adverse effects of foundation rocking can be minimized, while taking advantage of the favorable features of foundation rocking and hence they can be used as efficient and economical seismic energy dissipation mechanisms in buildings and bridges.  相似文献   

13.
This paper examines the rocking response and stability of rigid blocks standing free on an isolated base supported: (a) on linear viscoelastic bearings, (b) on single concave and (c) on double concave spherical sliding bearings. The investigation concludes that seismic isolation is beneficial to improve the stability only of small blocks. This happens because while seismic isolation increase the ‘static’ value of the minimum overturning acceleration, this value remains nearly constant as we move to larger blocks or higher frequency pulses; therefore, seismic isolation removes appreciably from the dynamics of rocking blocks the beneficial property of increasing stability as their size increases or as the excitation pulse period decreases. This remarkable result suggests that free‐ standing ancient classical columns exhibit superior stability as they are built (standing free on a rigid foundation) rather than if they were seismically isolated even with isolation system with long isolation periods. The study further confirms this finding by examining the seismic response of the columns from the peristyle of two ancient Greek temples when subjected to historic records. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
底部开缝预应力剪力墙结构力学性能的有限元分析   总被引:3,自引:0,他引:3  
根据现浇混凝土结构与装配混凝土结构的耗能特点,建立了底部开缝后张拉预应力摇摆剪力墙结构模型,并采用数值模拟方法研究其抗震耗能性能,分析分布钢筋、预应力水平、轴压力等参数对其力学性能的影响,并与同类型整体现浇剪力墙进行了对比分析。结果表明:底部开缝后张拉预应力摇摆剪力墙结构具有一定的耗能能力,虽然相对于现浇剪力墙结构,其承载力较低,但变形能力较强,墙体损伤和残余变形较小,并且具有较好的自复位能力。  相似文献   

15.
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.  相似文献   

16.
Precast concrete walls with unbonded post‐tensioning provide a simple self‐centering system. Yet, its application in seismic regions is not permitted as it is assumed to have no energy dissipation through a hysteretic mechanism. These walls, however, dissipate energy imparted to them because of the wall impacting the foundation during rocking and limited hysteretic action resulting from concrete nonlinearity. The energy dissipated due to rocking was ignored in previous experimental studies because they were conducted primarily using quasi‐static loading. Relying only on limited energy dissipation, a shake table study was conducted on four single rocking walls (SRWs) using multiple‐level earthquake input motions. All walls generally performed satisfactorily up to the design‐level earthquakes when their performance was assessed in terms of the maximum transient drift, maximum absolute acceleration, and residual drift. However, for the maximum considered earthquakes, the walls experienced peak lateral drifts greater than the permissible limits. Combining the experimental results with an analytical investigation, it is shown that SRWs can be designed as earthquake force‐resisting elements to produce satisfactory performance under design‐level and higher‐intensity earthquake motions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A new modeling for the seismic response assessment of free-standing, rigid or flexible, pure rocking systems is presented. The proposed modeling is based on equivalent single degree-of-freedom (SDOF) oscillators that can be implemented with common engineering software or user-made structural analysis codes. The SDOF models adopted use beam elements that are connected to a nonlinear rotational spring with negative stiffness that describes the self-centering capacity of the rocking member. The loss of energy at impact is treated with an “event-based” approach consistent with Housner's theory. Different variations pertinent to rigid blocks are first presented, and then the concept is extended to the flexible case. The implementation of the method requires some minor programming skills, while thanks to the versatility of the finite element method, it is capable to handle a variety of rocking problems. This is demonstrated with two applications: (a) a vertically restrained block equipped with an elastic tendon and (b) a rigid block coupled with an elastic SDOF oscillator. The accuracy and the efficiency of the proposed modeling is demonstrated using simple wavelets and historical ground motion records.  相似文献   

18.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Stiff, unattached structures are highly vulnerable to damage and failure during an earthquake, as evidenced following numerous past events. This class of structures encompasses a wide range of objects and systems such as electrical transformers, radiation shields, office furniture, and marble statues. The vulnerability of these objects is exacerbated when it is highly asymmetric and unattached. Although a number of studies have focused on rigid blocks, few have concentrated on blocks with asymmetric geometries. In an effort to better understand the implications of asymmetries, an extensive shake table testing campaign including more than 150 tests was conducted. These tests incorporate a systematic variation of the mass eccentricities of stiff, unattached structures. The primary modes of rocking, sliding, and twisting as well as interactive modes were recorded for the duration of numerous earthquake motions. The magnitude and direction of response are experimentally correlated with the geometric variations in the various models. These tests indicate that even for symmetric structures with uniaxial shaking, multiple modes and three‐dimensional responses are probable. Furthermore, certain asymmetric geometries exhibited both increased rocking (and overturning) as well as increased sliding when compared with their symmetric counterparts. A final aspect of this study compared the free rocking response of symmetric and asymmetric structures to classical, two‐dimensional rocking analysis. While the theoretical values for the coefficient of restitution yielded a significant overestimation in the simulation (up to ≈90%), reduced coefficients greatly improved the performance of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Precariously balanced rocks in seismically active regions are effectively upper-limit strong motion seismoscopes that have been in place for thousands of years. Thus, estimates of the dynamic toppling acceleration of these rocks (through rigid body rocking) can provide constraints on the peak ground accelerations experienced during past earthquakes. We have developed a methodology that uses a two-dimensional numerical code to calculate the dynamic rocking response of precarious rocks to realistic ground acceleration time histories. Statistical analyses of the dynamic response of these rocks to a range of synthetic seismograms, as well as strong motion records, can provide important information about the ground motion attenuation curves and seismic hazard maps. We use shake table tests to investigate the dynamic rocking response of 13 wooden rectangular blocks of various sizes and aspect ratios subjected to realistic seismograms and compare the results with those of numerical tests. Our results indicate good agreement between the shake table and numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号