首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water‐surface width and average depth, were measured at 58 to 888 equally spaced cross‐sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two‐dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log‐normal probability distributions. A general relation was determined which relates the means of the log‐transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0·13–0·42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first‐order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two‐dimensional morphological variables can be scaled such that the channel width–depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A model for describing river channel pro?le adjustments through time is developed and applied to a river responding to base‐level lowering in order to examine the effect of channel widening and downstream aggradation on equilibrium timescales. Across a range of boundary conditions, downstream aggradation controlled how quickly a channel reached equilibrium. Channel widening either increased or decreased the equilibrium timescale, depending on whether or not sediment derived from widening was deposited downstream. Results suggest that pro?le adjustments are more important than channel width adjustments in controlling equilibrium timescales for a channel responding to base‐level lowering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25 m in length along 12 streams in the Colorado Front Range. Length and diameter of each piece of wood were measured, and the orientation of each piece was tallied as a ramp, buried, bridge or unattached. These data were then used to evaluate longitudinal patterns of wood distribution in forested headwater streams of the Colorado Front Range, and potential channel‐, valley‐ and watershed‐scale controls on these patterns. We hypothesized that (i) wood load decreases downstream, (ii) wood is non‐randomly distributed at channel lengths of tens to hundreds of meters as a result of the presence of wood jams and (iii) the proportion of wood clustered into jams increases with drainage area as a result of downstream increases in relative capacity of a stream to transport wood introduced from the adjacent riparian zone and valley bottom. Results indicate a progressive downstream decrease in wood load within channels, and correlations between wood load and drainage area, elevation, channel width, bed gradient and total stream power. Results support the first and second hypotheses, but are inconclusive with respect to the third hypothesis. Wood is non‐randomly distributed at lengths of tens to hundreds of meters, but the proportion of pieces in jams reaches a maximum at intermediate downstream distances within the study area. We use these results to propose a conceptual model illustrating downstream trends in wood within streams of the Colorado Front Range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Logjams that span the bankfull channel strongly influence hydraulics and downstream fluxes of diverse materials. Several studies quantify the longitudinal distribution of channel-spanning logjams, but fewer studies examine changes in longitudinal distribution in response to disturbances such as floods. We use 10 years of annual surveys of a population of channel-spanning logjams along mountain streams in the Southern Rocky Mountains. Surveys from 2010 to 2019 bracket substantial interannual variability in the snowmelt peak flow as well as a rainfall flood in 2013. We characterised the number of logjams per unit length of valley (logjam distribution density) within and between reaches designated based on longitudinally consistent channel and valley geometry. Our primary objectives are to evaluate the influences on logjam distribution density of (i) spatial variations in valley and channel geometry and (ii) temporal variations in peak annual flow. We hypothesized that logjam distribution densities are resilient to disturbance at both spatial scales. At the creek scale, logjam distribution density correlates significantly with increasing ratio of floodplain width to channel width and wood piece length to channel width. Wide, low gradient reaches with greater distribution density exhibit greater interannual variation in distribution density. These reaches lost jams during the 2013 flood but returned to pre-flood distribution density values by the end of the study. The pattern of greater logjam distribution density in unconfined reaches relative to confined and partially confined reaches is also consistent over the period of the study. We interpret these results as indicating the resilience of logjam distributions to disturbance. The persistence of greater numbers of logjams in wide, low gradient reaches suggests that river restoration employing engineered logjams and wood reintroduction can focus most effectively on these reaches.  相似文献   

5.
The present analysis derives a stability criterion for long‐term equilibrium channel heads. The concept of finite perturbation analysis is presented, during which the surface is subjected to perturbations of a finite amplitude and resulting changes in flow path structure and slope are computed. Based on these quantities the analysis predicts whether the perturbed location is going to erode, be filled in or remain steady. The channel head is defined geometrically as the focus point of converging flow lines at the bottom of hollows. It is demonstrated that stability at the channel head grows out of the competition between the rate of flow path convergence and the degree of profile concavity. Analytical functions are derived to compute channel head‐contributing area and ‐slope, flow path convergence and profile concavity as a function of perturbation depth, distance from the crest and the initial slope. In a numerical model these quantities point to the long‐term equilibrium channel head position, which is shown to depend also on the width to length ratio of hollows. It is also demonstrated that the equilibrium channel head position is sensitive to the base‐level lowering/non‐dimensional slope length ratio and to the slope of the initial topography. Morphometrical measurements both in the field and on simulated topographies were used to test the theoretical predictions.  相似文献   

6.
IINTRODUCTIONThequestfordeterminingthedesigncharacteristicsofregimechannelshasbeengoingonforalongtime.Peoplehavebeenexcavatingnewormodifyingexistingchannelstousethemforirrigation,watersupply,navigation,floodcontrolandotherpurposes.Recently,archeologistsdiscoveredwhatiscurrentlybelievedtobetheoldestman(madecanalsystem.ItwasfoundintheareawhereMesopotamiausedtoexistanditisdatedbacktoabollt4,000BC.Ifachanne]isnotproperlydesigned,erosionofitsbanksordepositionofsedimentwithinitscross-sectionw…  相似文献   

7.
The storms usually associated with rill development in nature are seldom prolonged, so development is often interrupted by interstorm disturbances, e.g. weathering or tillage. In laboratory simulated rainfall experiments, active rill development can be prolonged, and under these conditions typically passes through a period of intense incision, channel extension and bifurcation before reaching quasi‐stable conditions in which little form change occurs. This paper presents laboratory experiments with coarse textured soils under simulated rainfall which show how channel adjustment processes contribute to the evolution of quasi‐stability. Newly incised rills were stabilized for detailed study of links between rill configuration and flow energy. On a loamy sand, adjustment towards equilibrium occurred due to channel widening and meandering, whereas on a sandy loam, mobile knickpoints and chutes, pulsations in flow width and flow depth and changes in stream power and sediment discharge occurred as the channel adjusted towards equilibrium. The tendency of rill systems towards quasi‐stability is shown by changes in stream power values which show short‐lived minima. Differences in energy dissipation in stabilized rills indicate that minimization of energy dissipation was reached locally between knickpoints and at the downstream ends of rills. In the absence of energy gradients in knickpoints and chutes, stabilized rill sections tended toward equilibrium by establishing uniform energy expenditure. The study confirmed that energy dissipation increased with flow aspect ratio. In stabilized rills, flow acceleration reduced energy dissipation on the loamy sand but not on the sandy loam. On both soils flow deceleration tended to increase energy dissipation. Understanding how rill systems evolve towards stability is essential in order to predict how interruptions between storms may affect long‐term rill dynamics. This is essential if event‐based physical models are to become effective in predicting sediment transport on rilled hillslopes under changing weather and climatic conditions. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

8.
The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1–1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1–1000 km2), representative of perennial stream networks, was derived from a 30‐m digital elevation model and analysed by computer analysis. Scaling laws used to describe large‐scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second‐order effect that reduces the number of order 1 and order 2 streams predicted by the large‐scale channel structure. This network comprises two spatial patterns of rills with width‐to‐depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width‐to‐depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and channel) had different drainage network structures to collect and transfer water and sediment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The changing form of developing alluvial river bars has rarely been studied in the field, especially in the context of the fixed, compound, mainly alternate gravel bars that are the major morphological feature of the wandering style. Century scale patterns of three‐dimensional growth and development, and the consequent scaling relations of such bars, are examined along the gravel‐bed reach of lower Fraser River, British Columbia, Canada. A retrospective view based on maps and aerial photographs obtained through the twentieth century shows that individual bars have a life history of about 100 years, except in certain, protected positions. A newly formed gravel bar quickly assumes its ultimate thickness and relatively quickly approaches its equilibrium length. Growth continues mainly by lateral accretion of unit bars, consistent with the lateral style of instability of the river. Bar growth is therefore allometric. Mature bars approach equilibrium dimensions and volume that scale with the overall size of the channel. Accordingly, the bars conform with several published criteria for the ultimate dimensions of alternate barforms. Sand bars, observed farther downstream, have notably different morphology. Fraser River presents a typical wandering channel planform, exhibiting elements of both meandered and low‐order braided channels. Hydraulic criteria to which the Fraser bars conform illustrate why this planform develops and persists. The modest rate of bed material transfer along the channel – typical of the wandering type – determines a century‐length time scale for bar development. This time scale is consistent with estimates that have been made for change of the macroform elements that determine the overall geometry of alluvial channels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Due to the geological time scales required for observation of catchment evolution, surrogates or analogues of field data are necessary to understand long‐term processes. To investigate long‐term catchment behaviour, two experimental model catchments that developed without rigid boundaries under controlled conditions are examined and a qualitative and quantitative analysis of their evolution is presented. Qualitatively, the experimental catchments have the visual appearance of field scale data. Observation demonstrates that changes in catchment shape and network form are conservative. Quantitative analysis suggests that the catchments reach an equilibrium form while a reduction in the channel network occurs. While the catchments are laboratory scale models, the results provide insights into field scale behaviour. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

12.
We have studied three‐dimensional fault geometries through a geologically integrated analysis of fault seismic attribute volumes. We used a series of coherence (semblance) and filtered coherence attribute volumes with parameters optimised for imaging faults in the studied seismic volumes. Fault geometric attributes such as along strike segment length and displacement were measured on fault seismic attributes. The scaling relationships of fault geometric attributes were studied using statistical methods such as the Bayesian information criterion, the likelihood ratio test, and the bootstrap method. Univariate distributions of fault segment length and maximum displacement show a truncated power law for most of the fault data. The statistical results indicate a piecewise‐linear relation with two slopes between depth and fault segments lengths: depth and mean displacement. For these relations, we observe consistent increases in fault segment lengths and mean displacements from the lower tip of the fault at depth toward a point of inflection at shallower depth at the vertical section. From that point, a reduction in fault segment lengths and mean displacements toward the upper tip of the fault at the shallower depth occurs. Fault segmentation along strike increases toward the lower and upper tips of the fault, but the maximum number of segments are located near the lower tip of the fault in two of the studied faults. The fault segment length is maximum, where the number of segments (along strike) is least close to the middle of the fault in the vertical section.  相似文献   

13.
Tidal creek networks have in 50 years extended over 30 km inland across the coastal plains of the Mary River in northern Australia, invading freshwater wetlands and destroying the associated vegetation. The networks have grown at an exponential rate through a combination of main channel extension and tributary development, with concomitant widening of the creeks. A large tidal range, very small elevational differences over the plains, and the availability of preexisting channel lines (notably in the form of palaeochannels) have been major factors contributing to the rapid rate of expansion. Close parallels exist between these networks and terrestrial networks as regards modes of growth and planimetric properties. A channel is initiated when the diffuse flow of a seepage zone becomes concentrated through localized scour. Subsequent development is characterized by the rapid extension of long first-order channels, with most tributary addition occurring later. Model tests suggest that branching was more likely on exterior links in the early stages but that exterior and interior link branching became more equally likely through time. Although the headward limits of the main creeks seem to have been reached, tributary infilling will continue to progress upstream. Only in the most downstream parts is a stable drainage density being approached. The networks not only satisfy the laws of drainage network composition and the basic postulates of the random model but also depart from topologic randomness in similar ways to terrestrial networks. Both topologic and length properties have changed during evolution but largely at the link rather than network scale. The close correspondence with terrestrial networks may be due to the low relief and the relatively unconstrained nature of growth in which availability of space was the main determining factor.  相似文献   

14.
Rivers may dramatically change course on a fluvial plain. Such an avulsion temporarily leads to two active channels connected at a bifurcation. Here we study the effect of dynamic meandering at the bifurcation and the effect of channel width adjustment to changing discharge in both downstream branches on the evolution of a bifurcation and coexisting channels. As an example, we reconstructed the last major avulsion at the Rhine delta apex. We combined historical and geological data to reconstruct a slowly developing avulsion process spanning 2000 years and involving channel width adjustment and meandering at the bifurcation. Based on earlier idealised models, we developed a one‐dimensional model for long‐term morphodynamic prediction of upstream channel and bifurcates connected at the bifurcation node. The model predicts flow and sediment partitioning at the node, including the effect of migrating meanders at the bifurcation and channel width adjustment. Bifurcate channel width adaptation to changing discharge partitioning dramatically slows the pacing of bifurcation evolution because the sediment balance for width adjustment and bed evolution are coupled. The model further shows that meandering at the bifurcation modulates channel abandonment or enlargement periodically. This explains hitherto unrecognised reactivation signals in the sedimentary record of the studied bifurcation meander belts, newly identified in our geological reconstruction. Historical maps show that bifurcation migration due to meander bend dynamics increases the bifurcation angle, which increases the rate of closure of one bifurcate. The combination of model and reconstruction identifies the relevant timescales for bifurcation evolution and avulsion duration. These are the time required to fill one downstream channel over one backwater length, the time to translate one meander wavelength downstream and, for strong river banks, the adaptation timescale to adjust channel width. The findings have relevance for all avulsions where channel width can adjust to changing discharge and where meandering occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We adapted Newton's law of cooling to model downstream water temperature change in response to stream‐adjacent forest harvest on small and medium streams (average 327 ha in size) throughout the Oregon Coast Range, USA. The model requires measured stream gradient, width, depth and upstream control reach temperatures as inputs and contains two free parameters, which were determined by fitting the model to measured stream temperature data. This model reproduces the measured downstream temperature responses to within 0.4 °C for 15 of the 16 streams studied and provides insight into the physical sources of site‐to‐site variation among those responses. We also use the model to examine how the pre‐harvest to post‐harvest change in daily maximum stream temperature depends on distance from the harvest reach. The model suggests that the pre‐harvest to post‐harvest temperature change approximately 300 m downstream of the harvest will range from roughly 82% to less than 1% of that temperature change that occurred within the harvest reach, depending primarily on the downstream width, depth and gradient. Using study‐averaged values for these channel characteristics, the model suggests that for a stream representative of those in the study, the temperature change approximately 300 m downstream of the harvest will be 56% of the temperature change that occurred within the harvest reach. This adapted Newton's law of cooling procedure represents a highly practical means for predicting stream temperature behaviour downstream of timber harvests relative to conventional heat budget approaches and is informative of the dominant processes affecting stream temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Sediment mining in rivers may have a major impact on river geomorphology and research is required to quantify these impacts. In this research, experimental studies were conducted to analyse the morphological changes of channel bed and the turbulent characteristics of flow in the presence of mining. The channel bed profile shows erosion at the bank of the pit and that the erosion expands to the whole width of the channel and propagates downstream with time. The deposition of sediment occurs along the upstream edge of the pit and the depth of the pit decreases with time. Velocity reversal occurs at the central bottom of the pit related to a recirculation zone. Reynolds shear stress and the turbulent intensities become higher in the mining pit region and downstream of it as compared to the upstream section, causing a more rapid movement of bed particles. Analysis of the bursting phenomenon shows that the contribution of sweep and ejection events to the total Reynolds shear stress is more dominant over outward and inward interaction events. The dominance of the sweep event over ejection is observed at the near‐bed region for all the sections, but the depth range of dominance of sweep events in the pit and downstream of the pit is found to be more than the upstream. The increase in thickness is responsible for the increase in bed material transport. The increased sediment transport capacity at the mining pit and downstream of it caused the deformation and lowering of channel bed downstream. An empirical formulation of bedload transport for mining induced channels is derived from two different sized uniform bed materials. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
Equilibrium is defined as a single-valued, temporally invariant functional relationship between the values of an output variable and the values of the input variable(s) in a geomorphic system. Disequilibrium occurs if the output deviates from the functional relationship by more than a consensual degree. Natural geomorphic variables are characterized by a relaxation time. Output variables are insensitive to cyclical inputs with frequencies much greater than the relaxation time, but can respond completely for sufficiently low frequencies. Rapid trends, recent step changes or pulse inputs, and intermediate frequency inputs can cause disequilibrium. The gradient of sand-bed alluvial channels (the output variable) is determined by sediment and water delivery from slopes (the input variables), and changes in this hydraulic regime require regrading by erosion and deposition. Initial stages of adjustment to changed regime in a long, unbranched channel with sediment and water delivery only at the upstream end propagate downstream, but later stages of adjustment occur simultaneously throughout the reach. In a dendritic channel network the gradient responds rather uniformly throughout the network to changes in regime during all stages of adjustment. The time scale of adjustment to changed regime depends upon the size of the channel network (or stream length), the sediment and water discharges, and to a lesser degree upon the magnitude of the change. Grade as defined by Mackin (1948) is synonymous with equilibrium as used in this paper if ‘a period of years’ is replaced by ‘a time period commensurate with the relaxation time of the gradient’. The use of the term grade is best restricted to a single-valued relationship between channel gradient and the hydraulic regime.  相似文献   

19.
The models of physiographic inundation and flood routing for channel network were used in this study to analyse the influence of the Tainan Scientific Base Industrial Park (TSBIP) and Feng-Hua detention ponds on the inundated potential, inundated volume, flood damage, and flood stage of peak flow along the Yen-Shui creek in 2-day flood for the 2-, 10- and 50-year return periods, respectively. The computed results show that the TSBIP detention ponds are able to reduce the inundated area and flood damage. However, the decrease in inundated area is not obvious for the 50-year return-period flood. Construction of the Feng-Hua detention pond resulted in a significant decrease in the flood stage along the Yen-Shui creek in the downstream reach. Moreover, the decrease in peak flow and lag of time-to-peak become increasingly evident in the downstream direction for the 2- and 10-year return-period events. For the 50-year return period, the lag of time-to-peak is not apparent, but the decrease in peak flow is still noticeable. In respect to the performance of detention ponds, the slopes of hydrographs in the rising and recession segments are smoother than those without detention ponds. Meanwhile, the shapes of peak become flatter if the detention ponds are installed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号