首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The adsorption behavior of methyl orange (MO) from aqueous solution onto raw bentonite (RB) sample was investigated as a function of parameters such as pH, inorganic anion, contact time, and temperature. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. Langmuir adsorption capacity was found to be 34.34 mg/g at pH 4.0. The pseudo‐first‐order, pseudo‐second‐order kinetic, and the intra‐particle diffusion models were used to describe the kinetic data. The values of the energy (Ea), enthalpy (ΔH), and entropy of activation (ΔS) were calculated as 38.62 kJ/mol, 36.04 kJ/mol, and ?150.05 J/mol K, respectively, at pH 4.0.  相似文献   

2.
In this study, a modified method was used to increase the adsorption of lead ions from aqueous solutions by using modified clay mineral on the laboratory scale. Adsorption experiments have been carried out on the use of both thermal activated sepiolite (TAS) and their glutamate/sepiolite modification (GS) as adsorbents. The experimental data was analyzed using adsorption kinetic models (pseudo first‐ and second‐order equations). The pseudo second‐order kinetic model fitted well to the kinetic data (R2 ≥ 0.99). Then, the Freundlich and Langmuir models were applied to describe the uptake of Pb(II) on GS and the Langmuir isotherm model agrees well with the equilibrium experimental data (R2 ≥ 0.97). The maximum adsorption capacity was observed to be 128.205 mg/g by GS according to the Langmuir equation. Desorption efficiency of the GS was studied by the batch method using EDTA, HCl, and HNO3 solutions. Desorption of 69.18, 74.55, and 80% of Pb(II) from GS was achieved with 0.1 M EDTA, 0.1 M HCl, and 0.1 M HNO3 solutions, respectively. FTIR analysis suggests the importance of functional groups such as amino, hydroxyl, and carboxyl during Pb(II) removal. SEM observations demonstrated that an important interaction at the lead‐modified sepiolite interface occurred during the adsorption process. In addition, the thermodynamic constants was calculated that the values of the Gibbs free energy (ΔG*), enthalpy (ΔH*), and entropy (ΔS*) of modification were 86.79 kJ/mol, ?18.91 kJ/mol, and ?354.70 J/mol/K, respectively. The negative value of ΔH* shows exothermic nature of adsorption.  相似文献   

3.
This study reports on the adsorption characteristics of Pb(II) ions from aqueous solutions using ZnCl2‐activated date (Phoenix dactylifera) bead (ADB) carbon with respect to change in adsorbent dosage, initial pH, contact time, initial concentration, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo‐second‐order kinetic model. Thermodynamic parameters, enthalpy change (ΔH° = 55.11 kJ/mol), entropy change (ΔS° = ? 0.193 kJ/mol/K), and Gibbs free energy change (ΔG°) were also calculated for the uptake of Pb(II) ions. These parameters show that adsorption on the surface of ADB was feasible, spontaneous in nature, and endothermic between temperatures of 298.2 and 318.2 K. The equilibrium data better fitted the Langmuir and Freundlich isotherm models than the D–R adsorption isotherm model for studying the adsorption behavior of Pb(II) onto the ADB carbon. It could be observed that the maximum adsorption capacity of ADB was 76.92 mg/g at 318.2 K and pH 6.5.  相似文献   

4.
In the present study, activated carbons were prepared from sisal fiber (Agave sisalana sp.) and pomegranate peel (Punica granatum sp.) using phosphoric acid as the activating agent. Both sisal fiber activated carbon (SFAC) and pomegranate peel activated carbon (PPAC) were characterized using methylene blue number, iodine number, BET surface area, SEM, and FTIR. The BET surface area of the SFAC and PPAC were 885 and 686 m2/g, respectively. The adsorption studies using C.I. Reactive Orange 4 dye on the SFAC and PPAC were carried out. The effects of time, initial adsorbate concentration, pH, and temperature on the adsorption were studied. The isotherm studies were carried and it was found that the Langmuir and Freundlich isotherms fit well for the adsorption of RO 4 on SFAC, while adsorption of RO 4 on PPAC is better represented by the Langmuir and Temkin isotherms. Adsorption kinetics of adsorption was determined using pseudo first order, pseudo second order, Elovich and intraparticle diffusion models and it was found that the adsorption process follows pseudo second order model. Thermodynamics parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined by using van't Hoff equation. The positive ΔH value indicates that RO 4 dye adsorption on SFAC and PPAC is endothermic in nature.  相似文献   

5.
Batch sorption technique was carried out for the removal of anionic dye Congo red (CR) from aqueous solution using raw rectorite (R‐REC) and organified rectorite (CTA+‐REC) modified by cetyltrimethylammonium bromide (CTAB) as adsorbents. The effects of organification degree of CTA+‐REC as well as the process parameters including the pH of dye solution, sorption time, and initial dye concentration on adsorption capacity for CR were investigated and the sorption kinetics was also evaluated. The results showed that the sorption behaviors of R‐REC and CTA+‐REC for CR followed pseudo‐second‐order kinetic model and the sorption equilibrium data perfectly obeyed the Langmuir isotherm. The thermodynamic parameters including entropy of sorption (ΔS0), enthalpy of sorption (ΔH0), and Gibbs free energy of sorption (ΔG0) were obtained and analyzed. Fourier transform infrared study revealed that a chemisorption process occurred between CR and CTA+‐REC. REC modified by cationic surfactants showed the higher adsorption capacities for CR compared to R‐REC and in theory would be used as an efficient and promising adsorbent for the removal of anionic dyes in wastewater treatment.  相似文献   

6.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   

7.
In the present work, biosorption of Cr(VI) by Nymphaea rubra was investigated in batch studies. Batch experiments were conducted to study the effect of initial sorbent dosage, solution pH and initial Cr(VI) concentration. The results showed that the equilibrium uptake capacity was increased with decrease in biomass dosage. The Cr(VI) removal was influenced by the initial chromium compound concentration. Langmuir and Freundlich adsorption isotherm models were used to represent the equilibrium data. The Freundlich isotherm model was fitted very well with the equilibrium data when compared to Langmuir isotherm model. The sorption results were analyzed for pseudo‐first order and pseudo‐second order kinetic model. It was observed that the kinetic data fitted very well with the pseudo‐second order rate equation when compared to the pseudo‐first order rate equation. Fourier transform infrared spectrum showed the presence of different functional groups in the biomass. The surface morphology of the sorbent was exemplified by SEM analysis. Aquatic weeds seem to be a promising biosorbent for the removal of chromium ions from water environment. This paper reports the research findings of a laboratory‐based study on the removal of Cr(VI) from the synthetic solution using the dried stem of N. rubra as a biosorbent.  相似文献   

8.
The adsorption of nickel and copper in a bicomponent system using the nonliving biomass of the marine brown alga Laminaria japonica was investigated in batch systems as a function of initial solution pH, contact time and temperature. The adsorption of nickel and copper was strongly pH dependent. Kinetic studies pointed to a rapid uptake with an equilibrium time of about 30 min. The kinetic curves were successfully fitted by linear regression to pseudo first and pseudo‐second‐order equations. The equilibrium data was analyzed using several models, including the extended Langmuir equation, modified extended Langmuir model and combined extended Langmuir‐Freundlich model. The results suggested that the competitive adsorption of nickel and copper at all temperatures was best represented by the combined extended Langmuir‐Freundlich isotherm. The isotherms indicated competitive uptake, with copper being preferentially adsorbed followed by nickel with an increase in the amount of solute in solution. Thermodynamic analysis revealed that the simultaneous adsorption of nickel and copper ions could be considered to be a spontaneous, endothermic process, with increased randomness.  相似文献   

9.
Batch sorption experiments were carried out for the adsorption of the basic dye Rhodamine B from aqueous solution using baryte as the adsorbent. The effect of adsorbent dosage, temperature, initial dye concentration and pH were studied. Adsorption data were modeled using first and second order kinetic equations and the intra particle diffusion model. Kinetic studies showed that the adsorption process followed second order rate kinetics with an average rate constant of 0.05458 g mg–1 min–1. Dye adsorption equilibrium was attained rapidly after 30 min of contact time. The equilibrium data was fitted to the Langmuir, Freundlich and Tempkin isotherms over a dye concentration range of 50–250 mg/L. The adsorption thermodynamic parameters showed that adsorption was an exothermic, spontaneous and less ordered arrangement process. The adsorbent, baryte, was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that baryte has good potential for the removal of Rhodamine B from dilute aqueous solution.  相似文献   

10.
11.
The natural cotton fiber was used to synthesize an anion exchange, containing ZrO2 film on its surface, NCFZC (natural cotton fiber/ZrO2 composite). This anion exchanger was produced by the reaction of the zirconium oxychloride and hydroxyl groups on surface of the natural cotton fiber. The material was used for Cr(VI) ions adsorption studies. Adsorption equilibrium time and optimum pH for Cr(VI) adsorption were found to be 6 h and 4.0, respectively. The Langmuir and Temkin isotherms were used to models adsorption equilibrium data. The adsorption capacity of NCFZC was found to be 1.33 mmol/g. Kinetic studies showed that the rate of adsorption of Cr(VI) on NCFZC obeyed a pseudo‐second‐order kinetic model.  相似文献   

12.
This study concentrates on the possible application of the spent cottonseed husk substrate (SCHS), an agricultural waste used after the cultivation of white rot fungus Flammulina velutipes, to adsorb methylene blue (MB) from aqueous solutions. Batch studies were carried out with variable initial solution pH, adsorbent amount, reaction time, temperature, and initial MB concentration. MB uptake was favorable at pH ranging from 4.0 to 12.0, and the equilibrium adsorption capacity of 143.5 mg g?1 can be reached promptly within about 240 min. The combination analysis of FTIR and BET techniques revealed that the massive functional groups on the biosorbent surface, such as hydroxyl and carboxyl, were responsible for the biosorption of MB. It was found that adsorption data matched the pseudo‐second order kinetic and Langmuir isotherm models. Thermodynamic parameters of free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°), obtained from biosorption MB ranging from 293 to 313 K, showed that the sorption experiment was a spontaneous and endothermic process. The study highlighted a new pathway to develop a new potential utilization of SCHS as a low‐cost sorbent for the removal of MB pollutants from wastewater.  相似文献   

13.
In this study, the adsorption of reactive red 120 (RR 120) on pistachio husk, and the modeling of the adsorption was investigated. Characterization of the pistachio husk was confirmed by Fourier transform infrared spectroscopy. The pHzpc of pistachio husk was found to be pH 8.5. Increasing the initial pH value decreased (p < 0.01) the amount of dye adsorbed. However, increasing the initial dye concentration from 50 to 900 mg/L at pH 1 increased (p < 0.01) the equilibrium dye uptake from 20.83 to 182.10 mg/g. Results indicated that this adsorbent had great potential for the removal of RR 120 dye. The logistic model was found to be the most suitable of the kinetic and equilibrium models tested to describe the adsorption of the dye. The parameters determined from the logistic model were well correlated with the initial dye concentration, and were seen to increase with the increasing initial dye concentration, but this was not observed from pseudo‐second order kinetics.  相似文献   

14.
15.
The adsorption of Ni(II) from aqueous solutions using base treated cogon grass or Imperata cylindrica (NHIC) was performed under batch and column modes. Batch experiments were conducted to determine the factors affecting adsorption such as pH, adsorbent dosage, initial nickel concentration, contact time and temperature. The fixed‐bed column experiment was performed to determine the practical applicability of NHIC and to obtain the breakthrough curve. Adsorption was fast as equilibrium was achieved within 60 min, and was best described by the pseudo second order model. According to the Langmuir model, a maximum adsorption capacity of 6.96 mg/g was observed at pH 5 and at a temperature of 313 K. Thermodynamic parameters such as ΔG0, ΔH0 and ΔS0 were calculated, and indicated that adsorption was a spontaneous and endothermic process. The mechanistic pathway of Ni(II) uptake was examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) spectroscopy. The Thomas and Yoon‐Nelson models were used to analyze the fixed‐bed column data.  相似文献   

16.
The effect of varying parameters such as dye concentration, adsorbent dose, pH and temperature on the adsorption capacity of Pleurotus ostreatus is investigated. The commonly available white rot fungus Pleurotus ostreatus is investigated as a viable biomaterial for the biological treatment of synthetic basic methylene blue effluents. The results obtained from the batch experiments reveal the ability of the fungus to remove methylene blue. The performance is dependent on the dye concentration, pH, and fungal biomass. The equilibrium and kinetics of adsorption are investigated and the Langmuir equation is used to fit the equilibrium isotherm. The adsorption isotherm of methylene blue follows only the Langmuir model with a correlation coefficient of ca. 0.96–0.99. The maximum adsorption capacity is ca. 70 mg of dye per g of dry fungus at pH 11, 70 mg L–1 dye, and 0.1 g L–1 fungus concentration, respectively. This study demonstrates that the fungus could be used as an effective biosorbent for the treatment of dye‐containing wastewater streams.  相似文献   

17.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

18.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

19.
The purpose of this work is the removal of basic dyes (Safranine T and Brilliant Green) from aqueous media by depolymerization products (DP) obtained from aminoglycolysis of waste poly(ethylene terephthalate) (PET). The surface morphology and physical properties of depolymerization product were also determined. Adsorption behaviors (adsorption capacities, adsorption kinetics and adsorption isotherms) of these samples were realized at room temperature. Then, the amounts of residual dye concentrations were measured using Visible Spectrophotometer at 530 and 618 nm for Safranine T (ST) and Brilliant Green (BG), respectively. All adsorption experiments were carried out for different depolymerization products (DP1, DP2, DP3, and DP4). Adsorption capacities of depolymerization products for both of dyes decrease with following order: DP2 > DP4 > DP1 > DP3. The maximum adsorption capacities for ST and BG onto DP2 sample were found to be 29 and 33 mg g?1, respectively. In addition, the adsorption kinetic results show that the pseudo‐second‐order kinetic model is more suitable than pseudo‐first‐order model for the adsorption of basic dyes onto DP samples. Adsorption data were evaluated using Langmuir and Freundlich adsorption isotherm models. The results revealed that the adsorption of basic dyes onto DP sample fit very well Langmuir isotherm model. In conclusion, the depolymerization products of post‐consumer PET bottles can be used as low cost adsorbent for the removal of basic dyes from wastewaters.  相似文献   

20.
Batch biosorption experiments were carried out for the removal of Congo red from aqueous solution using native and pretreated mycelial pellets/biomass of Trametes versicolor. The effect of process parameters such as contact time, dye concentration, and pH on the extent of Congo red biosorption has been investigated. Higher dye concentrations resulted in lower biosorption. Increases in biomass dosage led to increases in the levels of biosorption. Biosorption kinetics and equilibrium data are essential basic requirements to develop an effective and accurate design model for the removal of the dye. A kinetic study showed that the biosorption of the dye on fungal biomass was a gradual process. Pseudo‐first‐order, pseudo‐second‐order, and Bangham's model were used to fit the experimental data. The results of the kinetic studies showed that the second‐order kinetic model fitted well for the present experimental data. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Dubnin‐Radushkevich, and Temkin isotherms. The biosorption equilibrium data obeyed the Langmuir and Temkin isotherms well. Acidic pH was favorable for the biosorption of the dye. Studies on the pH effect and desorption show that chemisorption seems to play a major role in the biosorption process. Among the native and pretreated biomass studied, autoclaved biomass showed a better biosorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号