首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of functional portable optically stimulated luminescence (OSL) readers over the last decade has provided practitioners with the capability to acquire luminescence signals from geological materials relatively rapidly, which allows for expedient preliminary chronostratigraphic insight when working with complex depositional systems of late Quaternary age. Typically, when using the portable OSL reader, infrared (IR) or blue post-IR OSL signals are acquired from bulk unprocessed materials, in contrast to regular luminescence dating, which is usually based on measurements on pure quartz or feldspar mineral separates, or on select silt-sized polymineralic portions. To demonstrate the utility of portable OSL measurements, this paper outlines the basic features of portable OSL readers and their constraints. Subsequently, case studies in which the instrument has been used to elucidate cryptostratigraphic variations in sedimentary sequences for geomorphological applications are reviewed. The studies can generally be grouped into three main categories. The first includes studies where the variation of portable OSL reader luminescence signal intensities with depth are plotted to generate profiles that contextualize sediment stratigraphy. In the second group, portable OSL reader luminescence signal intensities are used to interpret sediment processes that shed light on depositional histories. In the last category, luminescence signals from the portable OSL reader are calibrated to approximate numerical burial ages of depositional units. The paper concludes with a discussion of possible future directions. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
We use three different approaches of optically stimulated luminescence (OSL) to study young fluvial sediments located at the main channels of one of the largest fluvial systems of North America: the Usumacinta–Grijalva. We use the pulsed photo‐stimulated luminescence (PPSL) system also known as portable OSL reader, full OSL dating and profiling OSL dating in samples extracted from vertical sediment profiles (n = 9) of riverbanks to detect changes in depositional rates of sediments and to obtain the age of the deposits. The results of the PPSL system show that the luminescence signals of vertical sediment profiles highly scattered from the top to the bottom contrast with the luminescence pattern observed on well‐reset sequences of fluvial deposits where luminescence increase from the top to the bottom of the profile. The profiling and full OSL ages yielded large uncertainty values on their ages. Based on the inconsistencies observed in both ages and luminescence patterns of profiles we suggest that these fluvial deposits were not fully reset during their transport. As an explanation, we propose that in the Usumacinta and Grijalva rivers the cyclonic storms during the wet season promote the entrainment of large volumes of sediments due to high‐erosional episodes around the basin resulting from hyper‐concentrated and turbid flows. We conclude that the PPSL, profiling and full OSL dating of sediments are useful tools to quantify and to assess the depositional patterns in fluvial settings during the Holocene. These techniques also can yield information about sites where increases in the sediment load of rivers may produce poorly resetting of grains affecting the results of OSL dating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Reliable age dating of coastal sedimentary landforms is crucial for inferring storm frequencies and magnitudes from geological archives. However, in highly energetic coastal settings, radiocarbon dating is often biased by reworking and/or poorly constrained marine reservoir effects. Due to this, most cyclone-driven sediment archives from the semiarid coast of NW Australia – a region frequently affected by tropical cyclones but with a historical record limited to ∼150 a, and therefore strongly in need of long-term data inferred from geological evidence – are affected by chronological inaccuracies. Optically stimulated luminescence dating (OSL) may overcome these shortcomings by dating the transport of sediment directly. In turn it may be related to other challenges when applied to cyclone deposits from semiarid environments. The cyclone-induced washover fans at Point Lefroy, NW Australia, are composed of a heterogeneous mixture of coral fragments, shell hash and siliciclastic sand. This makes them particularly prone to high dose scatter resulting from a combination of partial bleaching, sediment mixing and dose-rate heterogeneity. The washover fans are further characterised by a discontinuous nature of cyclone deposition, as indicated by erosional features and macroscopic brunification horizons. By using a combination of quartz single grain dating, autoradiography, alpha counting and gamma spectrometry, sediment mixing and dose rate heterogeneity are identified as the main sources of dose scatter. The resulting chronology allows us to discriminate at least four well constrained phases of washover fan activity at ∼180, ∼360, ∼870, and ∼1300 a ago. Older but less well constrained activity phases occurred ∼1950, ∼2300, and ∼2830 a ago. While these phases of increased cyclone activity correlate with depositional units separated by potential palaeosols, OSL ages, quasi-continuous portable OSL reader measurements and gamma spectrometry measured with increased sampling resolution point to deposition of distinct washover units within a very short period of time. However, unambiguous discrimination between deposition of individual units by single events and deposition by several cyclones within periods of only a few decades is currently not possible.  相似文献   

4.
Portable optically stimulated luminescence (OSL) readers are increasingly being used in geomorphological and archaeological investigations, but information regarding data reproducibility and the reliability of interpretations based on portable OSL reader data has not yet been presented to the wider geomorphological community. This Letter addresses these two issues by returning to Grabben Gullen Creek in the southeastern Australian Tablelands where we remeasure a sediment profile that was first measured by other researchers 3 years earlier. We also compare portable OSL reader data measured on sediment interpreted to have been deposited in swampy meadow wetlands and flood alluvium settings with data measured on known swampy meadow and flood deposits. Our data show that portable OSL reader data are reproducible. Moreover, we confirm the earlier interpretation that stratigraphies commonly exposed in southeastern Australian Tablelands valley bottoms reflect pre‐European swampy meadow wetlands and flood alluvium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We evaluate the paraglacial activity in Nexpayantla, a subtropical mountainous gorge in Popocatépetl volcano (Central Mexico), fully deglaciated in the 20th century. Glacial advances are evidenced by the presence of moraines. Fluvio-glacial terraces and an alluvial megafan resulted from the gorge deglaciation. Current reworking of the glacigenic material is done by landslides and debris flows produced on the moraines and terraces. To study the different phases of mobilization of glacigenic sediment, we used an approach based on the study of the optically stimulated luminescence (OSL) signals obtained from a portable OSL (POSL) reader in samples extracted from both glacigenic and paraglacial deposits. The luminescence (POSL) results obtained at moraines increase as altitude decreases, which is expected for deglaciated valleys where the oldest moraines are located at lower elevations. We evaluate the grade of luminescence signal reset of the glacigenic sediments during the proglacial stage, and the subsequent deglaciation phases. Our results indicate that there is a marked transition between glacial and fluvially dominated processes at Nexpayantla Gorge. We find that the grade of luminescence signal resetting in the paraglacial deposits is a good indicator to trace paraglacial stages and the beginning of exhaustion of the paraglacial activity in mountain areas. OSL ages confirm that the oldest fluvio-glacial terraces found at the middle sector of Nexpayantla Gorge are ~2 ka, which is also supported by an AMS 14C age. OSL dating was found challenging, since quartz grains have low sensitivity because of their volcanic origin; POSL signals, however, are in good agreement with the location and distribution of geomorphic markers. We propose that luminescence data obtained from the POSL unit can be useful to provide information about sediment mobilization in paraglacial environments during different climatic pulses – even for the case where mineral grains have low sensitivity, such as in volcanic sediments. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
Temporal constraints for the Late Pleistocene deposition of eolian dunes that occur in central and northern Alberta, Canada can be provided by dating sediments from the dune bases using luminescence techniques. In places, however, the postglacial dunes overlie glaciofluvial sands that resemble the eolian deposits in texture such that demarcating the bases of the dunes is often problematic. In this study we address the problem by employing a portable optically stimulated luminescence (OSL) reader to construct luminescence profiles that depict luminescence signal variation with depth. With the portable OSL reader, measurement can be performed on bulk sediments, negating the need for laborious separation procedures to isolate pure mineral fractions, as is required in regular luminescence dating. Measurements can also be carried out in the field, permitting quicker decision making during sample collection. Results from this study, presented as depth variations of feldspar derived infrared stimulated luminescence (IRSL) signals and predominantly quartz‐generated post‐IR blue OSL signals, show that luminescence profiling enables one to distinguish between eolian deposits that make up the dunes from the underlying non‐eolian sands. The identification of such cryptostratigraphic interfaces is made possible by differences in the dosimetric histories of the sediments. The delineation of the dune bases allows targeted sampling that yields best luminescence age approximations for the initiation of postglacial eolian deposition in the region. Luminescence profiling of eolian sequences would also, in theory, permit the identification of depositional breaks of extended duration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The reliability of single-grain optically stimulated luminescence (OSL) dating of young (<500 years old) samples is assessed by examining the results of 166 single-grain OSL analyses of Australian alluvial, lacustrine, estuarine, coastal and marine sediment samples. All samples have been analysed using the modified SAR protocol of Olley et al. [2004b. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60, 337–358], with burial doses (Db) calculated by fitting a single Gaussian curve to the peak of a multi-Gaussian summed probability distribution (PDFGaussian). The near-equivalence of this approach to currently accepted methods of palaeodose estimation – namely the minimum age and central age models of Galbraith et al. [1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339–364] – is demonstrated. Considered as a whole, OSL ages calculated using the PDFGaussian Db determination method are consistent with other chronometric, geomorphological, botanical and historical indicators of depositional age, while four alternative (previously published) methods are generally less reliable when applied to the samples analysed here. The single-grain data from 12 samples of known age (reported by Olley et al. [2004b. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60, 337–358]) are re-analysed using the PDFGaussian approach, with all but one yielding a Db consistent with the independently known age. Examples of luminescence data (dose recovery tests, preheat plateaux, continuous-wave and linear-modulated OSL, growth curves, single-grain dose distributions) are provided that together indicate the suitability of Australian quartz for dating young sediments.  相似文献   

8.
Luminescence dating has become a key tool in studies of the Quaternary. The typically stable luminescence response of quartz grains and the absence of a significant internal dose, make quartz minerals the preferred dosimeter for monitoring the burial dose in sediments. Unfortunately, the reliability of conventional OSL (optically stimulated luminescence) dating, based on blue stimulation, can be compromised when the luminescence decay is not dominated by a rapidly decaying and stable part of the luminescence signal (i.e. the fast component). On the other hand, standard methods in luminescence dating are limited to ages of a few hundred kiloyears. In this study, violet stimulated luminescence (VSL) has been used as a means to overcome both problems, applied to a series of colluvial deposits in the Atacama Desert, Chile. Quartz from this region, characterized by poor blue-OSL response, showed a reproducible and stable VSL signal capable of recovering given doses up to ∼500 Gy and a saturation dose twice as high as conventional OSL. The VSL response from these samples has been studied in detail and the estimated ages have been compared with an already established chronology for the same site, based on IRSL of potassium feldspar single grains. Results agree for the dose range of the profile studied, ∼100–250 Gy, equivalent to ages of 29–79 ka confirming the suitability of VSL for dating sedimentary quartz with unreliable blue-OSL response and to extend the age range of conventional OSL dating.  相似文献   

9.
Portable optically stimulated luminescence (OSL) readers are robust devices that allow rapid determination of luminescence signals of polymineralic coarse-grained samples. To date, however, the utility of portable OSL readers has largely been confined to the construction of luminescence profiles that depict variations of luminescence signal intensities with depth. Because the luminescence signals used to construct such profiles are uncalibrated, it is neither practical to quantitatively compare portable OSL data from different sites nor is it possible to approximate sample ages. Such comparisons could be facilitated by converting portable OSL signals into equivalent doses (De). However, determining De requires the construction of unique growth curves for each sample; a laborious procedure that negates the rapidity associated with portable measurements. To circumvent that limitation, we construct standardised growth curves (SGCs) using normalized regeneration dose signals obtained using a portable OSL reader from the feldspar component of polymineralic sands from five disparate eolian dune sites in Alberta, Canada. Comparison of SGCs from different samples indicates general congruence and we merge these to construct a regionally applicable curve which we test by comparing the De obtained from given samples with that obtained using conventional OSL dating protocols. Results show that, though the uncertainties associated with the portable OSL data are high, the De values from the two approaches are linearly proportional. This direct variation enables portable OSL SGC De values to be used independently in reconnaissance studies that aim to screen samples for more detailed analysis using standard OSL methods. The affordability of portable OSL readers suggests that the approach could be attractive to researchers who do not have ready access to conventional OSL readers.  相似文献   

10.
Middle to late Holocene alluvium, identified as Quaternary alluvial unit 4 (Qa4), along Kanab Creek in southern Utah, USA was dated using optically stimulated luminescence (OSL) on quartz sand, and by radiocarbon dating of detrital charcoal. Entrenchment beginning in 1882 AD created arroyo walls that expose up to 35 m of the Qa4 alluvium. The stratigraphy and sedimentology suggest that fluvial aggradation along the study reach occurred rapidly. Due to the high sediment supply, short transport distances and semi-arid climate with flashy discharge, partial bleaching (zeroing) of the luminescence signal was expected to be a problem for OSL dating. We approached this problem by first using small-aliquot (∼20 grains) and single-grain dating of quartz sand to reduce the number of grains contributing to the OSL signal. Second, we used statistical parameters based on single-grain and small-aliquot equivalent dose (De) distributions of bleached sediment to help identify partial bleaching and to inform if a minimum age model (MAM) should be used for age calculation. Comparison of results with radiocarbon ages demonstrates the success of OSL dating on Kanab Creek arroyo-fill deposits, although careful attention should be paid to the sedimentary facies and stratigraphy of the targeted sample horizon to minimize the effects of partial bleaching. Thin, decimeter-scale plane-bedded and ripple cross-bedded sandy lithofacies were found to be the best target for OSL dating, as these sediments showed minimal evidence for incomplete solar resetting. Additionally, results generally indicate that better-bleached sediments are found in downstream reaches. Age control from these arroyo-fill deposits was acquired in order to fulfill larger research goals of understanding regional arroyo incision and aggradation cycles.  相似文献   

11.
Using the concept of bleaching in optical dating, a new index of sediment sample bleaching percentage (BLP‐2) was developed and applied to evaluate sand grain transport from riverine to deep‐marine environments. As bleached grains in modern sediments have no optically stimulated luminescence (OSL)/infrared stimulated luminescence (IRSL) signal, bleached and unbleached feldspar grains are distinguished by IRSL intensity. The BLP‐2 distribution of present deposits around the Kumano area, on the Pacific coast of central Japan, suggests that sand grains in surface turbidites obtained from the bottom of the Kumano Trough are of flood/storm origin rather than seismogenic origin. The distribution of BLP‐2 tentatively suggests sand grain erosion–transport–depositional processes; for example, origin and transport agencies of shelf sand, and influence of coastal erosion on the beach deposit. Although the present BLP analysis is not yet supported by a rigorous statistical test, it is useful to distinguish recent deposition and remobilization of sand grains. Furthermore, if the depositional age and the luminescence age of sand grains are accurately estimated, sand grain transport processes of old (late Quaternary) sediments may be estimated by the methodology similar to that of the present study.  相似文献   

12.
A common explanation for intense soil erosion and gullying in SE Australia is the introduction by Europeans of new land use practices following their arrival in Australia in the late 18th century. Eucalyptus woodlands were cleared to introduce farming, and valley bottoms, characterized by chains of ponds with organic‐rich swampy meadow (SM) soils, were subsequently buried by thick deposits of ‘post‐settlement alluvium’ (PSA) generated by erosion in the catchment. In this study, optically stimulated luminescence (OSL) is used to evaluate the source(s) of the PSA in Grabben Gullen Creek (GGC), Australia. We use a portable OSL reader to measure total photon counts on bulk polymineral and polygrain‐size samples from nine profiles along the Creek. We use these luminescence signals as geotracers of sediment source(s) and transport pathways. We obtained higher luminescence signals in the PSA than in the SM sediments, suggesting different sources and fluvial transport conditions for these two widespread sedimentary units. Portable OSL reader data from soils in the GGC catchment that are potential sources for the SM sediments and PSA show that the high luminescence signals recorded in the PSA are similar to those from subsoil samples in granite soils, suggesting that the PSA was derived by gullying of granite subsoils. In the SM sediments, luminescence signals decrease upwards from the base of the profile, as expected in well‐reset fluvial deposits, but with one or more changes in gradient in the profile of photon counts with depth, most likely indicating changes in sediment deposition rates. To calculate deposition rates in the SM sediments, several samples were dated using OSL. The OSL ages produced low scatter in the equivalent doses, confirming the well‐reset nature of the grains composing the SM and indicating a process of sediment transport in dilute flows, as is interpreted from the portable OSL signals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The Qinghai-Tibetan Plateau is an important area for the study of Quaternary glaciation. Optically stimulated luminescence (OSL) dating has the potential to contribute to the chronology of glaciation in this region, but it is important to assess the accuracy of OSL dating of these glacial sediments. In this study, single grain quartz OSL signals are examined for five glacial samples collected from the moraines outside the Baiyu Valley, southeastern Tibet. The quartz grains exhibit poor luminescence characteristics, with a small proportion of grains passing the screening criteria. Grains which pass the screening criteria have relatively low signal intensity, leading to De values with large uncertainties. MAM and CAM were used to determine De values for these samples. The OSL ages are consistent with the sequence of events derived from the geomorphological relationship of the samples, and also with previous published radiocarbon ages. However, it is more difficult to reconcile the OSL ages and the terrestrial cosmogenic nuclide (TCN) 10Be ages. Analysis of both single grain quartz OSL data and TCN 10Be data is complex in this area. Further work is required to increase confidence in the OSL ages generated for the glacial sediments from this region.  相似文献   

14.
Employing a portable luminescence reader in a novel approach for studying soil mantles can help to both better our understanding of and determine the relative importance of the different erosional processes operating on a given landscape. By measuring bulk IRSL signal intensity of unprepared regolith samples as a function of depth, a portable reader has been used to rapidly explore patterns and rates of soil mixing within the actively uplifting San Gabriel Mountains, southern California, USA. Both IRSL and OSL measurements were taken from three different hillslope soil profiles collected within a 100 m radius, as well as a number of bedrock samples. To gauge the rates of grain mixing, bulk IRSL signals are converted to dose values by measuring IRSL growth as a function of dose in a conventional luminescence reader using smaller subsamples from key locations. These data are combined with dose rate determinations based on both in-situ NaI gamma spectrometer measurements and chemical determinations of U, Th and K, in order to convert dose values into “effective age” estimates; these values represent mixed regolith and soil, and not age of sediment deposition. This approach has generated soil turn-over histories much more complex than our simple, signal saturation-with-depth model predicts.  相似文献   

15.
The Altyn Tagh Fault(ATF)is one of the most prominent active strike-slip faults in the India-Eurasia collision. Fresh features of surface ruptures, which are attributed to seismic events taking place in the last millennium, are identified at several sites along the Che'erchen River to Qingshui River section on the central part of ATF. Accurate chronology of these earthquake events would help understand the spatial-temporal relationship of the recent earthquakes. However, great difficulties are encountered. The central ATF is located in the arid area, and the vegetation cover is so limited that rare organic materials appropriate for radiocarbon dating can be found in the sediments. Luminescence dating technique may serve as an alternative to directly determine the burial ages of the earthquake related sediments. The optically stimulated luminescence(OSL)signal of quartz, which has been widely employed for luminescence dating, displays unwanted charateristics for accurate dating. Firstly, the quartz OSL signal is not sensitive to irradiation, which leads to low signal-to-noise ratio or even no measurable quartz OSL signal. Secondly, the targeted samples of the last millennium are very young, and the radiation dose received during the burial is expected to be less than 3~4Gy, which futher deteriorates the signal-to-noise ratio of the quartz OSL signal. Therefore, quartz OSL signal is not appropriate for dating the sediments relevant to the recent earthquakes on ATF.
The infrared stimulated luminescence(IRSL)signal of potassium feldspar is an alternative, and it is in usual an order of maginitude more sensitive to raidation than the quartz OSL signal. The enhanced signal-to-noise ratio makes it applicable to young samples. The post-IR IRSL signal has been successfully applied to date the sediments beyond the Holocene, however, the relatively slow bleaching of the post-IR IRSL signal poses challenges on applying it to young sediments, especially for the sediments deposited during the last millennium. In this study, we investigated the feasibility of using post-IR IRSL signal from potassium feldspar to date the earthquake events of the last millennium by employing modern sag pond deposits with different sorting and expected equivalent dose(De)of 0Gy. Choosing an appropriate measurement procedure and identifying the well bleached pottassium feldspar grains are essential for post-IR IRSL dating of young sediments. The non-fading characteristic of the post-IR IRSL170 signal measured at 170℃ following a prior IR stimulation at 110℃ was verified by employing the De plateau test with respect to the signal integration interval and IR stimulation temperature together. Reducing the amount of potassium feldspar grains mounted on an aliquot would help reveal the among grains variation of bleaching level of post-IR IRSL170 signal before depostion and identify the most sufficiently bleached grains. Therefore, the post-IR IRSL170 De values of 2mm aliquots were measured for three samples with different sedimentary textures. The median of De distribution of well sorted and stratified sag pond deposits is consistent with the minimum De value inferred from the minimum age model(MAM-3) and finite mixture model(FMM), while for the poorly sorted deposits, the median is significantly overestimated compared with the minimum De values from the MAM-3 and the FMM. The minimum De values of 0.6~0.8Gy of all three samples are consistent with the unbleachable residual dose previously reported for post-IR IRSL signals measured at similar temperature for well bleached samples. It implies that by combined use of small aliquot and statistical age models, the well-bleached potassium feldspar grains could be identified. Such an intrinsic unbleachable component needs to be properly corrected when earthquake events of last millennium are to be dated in this area. Otherwise, the post-IR IRSL170 age would be overestimated by 200~300a.
The post-IR IRSL170 procedure investigated in this study is not only applicable for dating the paleoearthquake events along the Altyn Tagh Fault, but also with great potential to be applied to other tectonically active area. With consideration of the potential variability in post-IR IRSL signal characteristics of potassium feldspar grains from different origins, the signal stability needs to be routinely inspected. The modern analog sample would also be informative for justifying the measurement procedure and analytical method employed.  相似文献   

16.
Optically stimulated luminescence (OSL) dating is becoming a useful technique to yield absolute age of organic-poor sandy deposits. The buried tidal sand body (BTSB) in the coastal zone of northern Jiangsu Province, China, has been suggested to have the same origin as the offshore radial sand ridge in the Yellow Sea. However, chronological constrain of the BSTB is still quite limited. In this study, OSL measurements were conducted using silt-sized multi-grain and coarse-grained single-grain quartz to constrain the depositional history of a 25.6 m core from the BTSB. A low luminescence sensitivity of quartz was observed, and only ∼1.04% of the grains passed the standard rejection criterion for single-grain measurement. Analysis of paired OSL ages from two grain-size fractions using different protocols showed that silt-sized quartz ages were underestimated of 0.14–1.35 ka in comparison to coarse-grained quartz in the depth interval of 5.8–22.4 m. We interpret such an age discrepancy as the effects of lateral infiltration of fine-grained sediment into the sand body due to dynamic feature of channel-ridge system on the shelf. As far as we know, it is the first time that such infiltration is demonstrated through OSL dating. Our OSL data indicated that there is a significant hiatus between the Late Pleistocene stiff clay layer (50–18 ka) and the Holocene sequence. Holocene deposits only occurred in the last 2 ka, with rapid accumulation of ∼17 m-thick sediments at ∼2–1 ka, a slower accumulation between ∼1 and 0.1 ka and rapid land emergence through an accretion of ∼4 m-thick sediment over the past ∼0.1 ka. This study highlights the complexity of OSL dating in highly dynamic sedimentary environments. Therefore, examining different grain size fractions and comparing different measurement protocols are highly deserved in carrying out OSL dating in such environments.  相似文献   

17.
Optically stimulated luminescence (OSL) dating methods have been widely applied in Quaternary glaciology. However, glacigenic deposits are considered in general as problematic for OSL dating, mainly because they are transported shorter distances prior to burial and are usually partially bleached. Thus, most researchers choose glaciofluvial and glaciolacustrine sediments (with relatively longer transportation times) for OSL dating when constraining the age of glaciation. In this study, four samples were collected from a lateral moraine series at Zhuqing Village, northern margin of Queer Shan Mountain, eastern Tibetan Plateau, in order to investigate the applicability of OSL dating for morainic deposits. Quartz grains (38–63 μm) were extracted and measured using single aliquot regenerative-dose (SAR) protocol. Internal checks and dose recovery test show that the SAR protocol is appropriate for equivalent dose (De) determination. The effect of thermal transfer is small for all samples and the recycling ratio for each individual sample is close to unity. The symmetry in the De distributions indicates that quartz grains were well-bleached prior to burial. OSL ages show good agreement with geomorphological and field investigations, and are also concordant with an independent ESR age. It is concluded that: (a) the morainic deposits in Zhuqing were well-bleached and suitable for OSL dating; (b) SAR protocol can be applied to morainic deposits for samples under study.  相似文献   

18.
There are many examples of exposed or buried rock surfaces whose age is of interest to geologists and archaeologists. Luminescence dating is a well-established method of absolute chronology which has been successfully applied to a wide range of fine-grained sediments from hundreds of years to several hundred thousand years. Optical stimulated luminescence (OSL) has been recently proposed as a new method to date these rock surfaces (Laskariset al., 2011; Sohbatiet al., 2012a; Chapotet al., 2012; Pedersonet al., 2014; Sohbatiet al., 2015; Freieslebenet al., 2015). The basic principle is that luminescence signal of rock surface will soon decay when the rock is exposed to sunlight. When the rock surface is turned to be buried side, the OSL signal begins to accumulate again. With the variation of residual luminescence with depth, it is possible to estimate exposure and burial history of the rock. This article describes briefly the different luminescence dating methods for rock surfaces, its progress, application examples and present problems. For instance, Sohbatiet al. (2011) studied the depth dependence of the bleaching of the IRSL signal from granitic rocks, Laskaris and Liritzis (2011) proposed a mathematical function to describe the attenuation of daylight into rock surfaces, Sohbatiet al. (2012a) developed their model to include the environmental dose rate, Sohbatiet al. (2012b) overcame the problem of parameter estimation by using a known-age road-cut sample for calibration, Sohbatiet al. (2012c) further developed the OSL surface exposure dating model by including the simultaneous effect of daylight bleaching and environmental dose rate, and so on. These studies indicate that OSL dating method for rock surface can be applied widely to studies of geological and geomorphological evolution, archeology and Quaternary tectonic activity.  相似文献   

19.
Recent developments have opened up the possibilities of using potassium feldspar for dating Pleistocene sediments; a stable (less-fading) part of the infrared stimulated luminescence (IRSL) signal can be selected by largely depleting the unstable part of the IR signal, using a combination of thermal and IR stimulation: post IR-IRSL dating (pIR-IRSL).This study aims to test the validity of pIR-IRSL dating on feldspars. We obtained pIR-IRSL ages on a large suite of samples from several locations in the Netherlands area, covering a wide range of depositional environments and ages. Age control was provided by quartz optically stimulated luminescence (OSL) ages on the same samples; these ages were shown to accord with geological age constraints. Comparison with IRSL ages enabled us to evaluate the improvement that pIR-IRSL dating provides over conventional IRSL methods.The majority of feldspar ages obtained with pIR-IRSL showed good agreement with both the quartz OSL ages and the geological age constraints. Our study demonstrates that pIR-IRSL dating is more robust than conventional IRSL and should be the method of choice in feldspar luminescence dating of Pleistocene sediments.  相似文献   

20.
The properties of the quartz luminescence signal have been shown to be a useful tool for sediment provenance analysis. These provenance studies are based on the sensitivity of the fast optically stimulated luminescence (OSL) component, which is also used for sediment dating. Besides the widespread occurrence of quartz in terrigenous sediments, OSL sensitivity can be acquired using relatively fast and low-cost measurements compared to sediment provenance analysis methods based on accessory minerals or isotopes. Additionally, laboratories worldwide already have an extensive database of recorded quartz OSL signals primarily measured for dating studies, and these data could potentially be repurposed for provenance analysis of Quaternary sedimentary systems through OSL sensitivity calculation. Here, we investigate the use of OSL quartz signals measured in sediment dating surveys for OSL sensitivity calculation and evaluation of changes in sediment sources. The OSL sensitivity was calculated and expressed as %BOSLF, which corresponds to the percentage of the fast OSL component signal (blue stimulation) to the total OSL curve; such approach is advantageous as it does not require any normalisation of the measured signal intensity to dose or aliquot size (weight). Three sets of samples from Amazonian fluvial sediments are investigated: two sets of Holocene floodplain sediments representing different sediment sources to the Amazonian fluvial system, i.e. the Amazon craton and the Andes Mountain belt, and a set of samples from the Içá Formation, a paleo-fluvial system active during the Pleistocene whose provenance is not fully known. Results show that the quartz OSL signal derived from the first test doses (Tn) applied in dating protocols had the best performance for %BOSLF calculation when compared to results from a measurement protocol designed specifically for sediment provenance analysis. There is significant correlation (R2 = 88) between sensitivities derived from Tn and a specific OSL provenance analysis protocol. The proposed approach indicates to be appropriate for sediment provenance analysis since it is able to discriminate signal differences among samples from known sources: Brazilian cratonic quartz yield high sensitivity values (mean %BOSLF >70), in contrast to the relatively lower values from Andean quartz (mean %BOSLF <50). In general, quartz OSL sensitivities from the Içá Formation samples fall into the same range of modern sediments transported by the Içá and Japurá rivers draining the Andean Eastern Cordillera of Colombia and Ecuador. We also observe a decrease in quartz OSL sensitivity during the Holocene, notably after 4 ka, with younger deposits showing lower sensitivity. Sediment provenance variations are discussed in terms of watershed rearrangement and/or precipitation-driven changes during the Late Pleistocene and Holocene across Amazonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号