首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subtidal nearshore sandbars may exhibit cyclic net offshore migration during their multi‐annual lifetime along many sandy coasts. Although this type of behavior can extend continuously for several kilometers, alongshore variations in cross‐shore bar position and bar amplitude are commonly observed. Alongshore variability is greatest when bars display km‐scale disruptions, indicative of a distinct alongshore phase shift in the bar cycle. An outer bar is then attached to an inner bar, forming a phenomenon known as a bar switch. Here, we investigate such large‐scale alongshore variability using a process‐based numerical profile model and observations at 24 transects along a 6 km section of the barred beach at Noordwijk, The Netherlands. When alongshore variability is limited, the model predicts that the bars migrate offshore at approximately the same rate (i.e. the bars remain in phase). Only under specific bar configurations with high wave‐energy levels is an increase in the alongshore variability predicted. This suggests that cross‐shore processes may trigger a switch in the case of specific antecedent morphological configurations combined with storm conditions. It is expected that three‐dimensional (3D) flow patterns augment the alongshore variability in such instances. In contrast to the observed bar behaviour, predicted bar morphologies on either side of a switch remain in different phases, even though the bars are occasionally located at a similar cross‐shore position. In short, the 1D model is not able to remove a bar switch. This data‐model mismatch suggests that 3D flow patterns are key to the dissipation of bar switches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, an intertidal bar and trough system on the beach of Noordwijk, The Netherlands was monitored over a 15‐month period in order to examine the daily to seasonal sequential cross‐shore behaviour and to establish which conditions force or interrupt this cyclic bar behaviour. The beach morphology (bars and troughs) was classified from low‐tide Argus video images based on surface composition. From the classified images, time series of the landward boundary of the bar and of the trough were extracted. The time series of the alongshore‐averaged boundary positions described sawtooth motion with a period between 1 and 4 months, comprising gradual landward migration followed by abrupt seaward shifts. The abrupt seaward shift appeared to be a morphological reset induced by storm events, which lasted at least 30 h with a large average root‐mean‐square wave height (≥2 m) and offshore surge level (≥0·5 m), and a small trough (<20 m wide) in the pre‐storm beach morphology. The time series of the boundary positions exhibited very little longer (seasonal) scale variability, but somewhat larger smaller (daily) scale variability. The bar boundary was found to be more dynamic than the trough boundary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamics of the dunefoot along a 160 km portion of the Dutch coast has been investigated based on a data set of annual surveys dating back to as early as 1850. The linearly detrended (or residual) dunefoot positions comprise an alongshore uniform and an alongshore non‐uniform component. The former is expressed as 10 to 15 m of landward retreat along extensive (>10 km) stretches of coast during years with severe storm surges and as up to 5 m of seaward advance during years without significant storm activity. The latter, alongshore non‐uniform component is organized in sandwave‐like patterns, which may have a longevity of decades to up to the duration of the entire data set (150 years). Their wavelengths vary along the coast, from 3·5 to 10 km; migration rates are 0–200 m a?1. Dunefoot sandwaves are shown to be the shoreward extensions of similar sandwave patterns in the beach position. The non‐uniform dunefoot behaviour constitutes at least 80 per cent of the total residual dunefoot dynamics, implying that along the Dutch coast residual dunefoot variability is controlled by temporal and spatial variability in beach characteristics, and not by storm‐induced uniform erosion. Various potential mechanisms causing beach sandwaves are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Variability in the regional setting and morphology of cuspate forelands on the west coast of Western Australia is examined in this paper. In accordance with this aim, principal differences in the geologic and geomorphologic setting of three prominent sites on the west coast were established and their association with historical changes and contemporary oceanographic processes was examined. The cuspate forelands investigated are Jurien Bay, Winderabandi Point and Turquoise Bay. The most significant differences in geologic setting are associated with the structure and location of an extensive offshore reef system. Morphologically, the reef alters from south to north, changing from a discontinuous ridge parallel to the shore along the central west coast, to a nearly continuous fringing reef at Ningaloo. The reefs vary in distance from the shore, being farthest in the south and closest in the north and they impound a series of inshore basins, or lagoons. The deeper southern basins are dominated by locally generated wind waves and wind‐generated currents. The shallower northern basins are most markedly affected by tidal currents and wave pumping across the reef flats. The large cuspate foreland at Jurien on the central west coast has undergone shoreline configuration change in response to changing phases of storminess as well as in response to a change in focus for sediment deposition as a result of offshore reef erosion. At Winderabandi Point on the Ningaloo coast, relict Pleistocene limestone has provided the focus for sedimentation and morphology has been controlled by a balance in refracted wave energy and nearshore currents driven by tidal and wave set‐up variability. At Turquoise Bay, where the lagoonal basin is most shallow and narrow, the morphology of the foreland suggests that it may at some stage have been migratory, but its present asymmetrical shape is maintained by strong northerly longshore drift and strong currents exiting the lagoon through a nearby gap in the reef crest. Fundamental differences between the two coastal regions include the structure of the offshore reef, processes driving flow of water within the lagoons and the role of storminess in evolution of coastal landforms. Although many questions regarding storm surge dynamics and landform change remain unanswered, this research provides a significant contribution to the understanding of the evolution of morphological systems in low‐wave‐energy protected environments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Shorefaces play a critical role in cross‐shore sediment transport between the beach and inner shelf, particularly during storm conditions. A comparison and examination of storm‐driven sedimentary changes on two adjacent shorefaces in Northern Ireland, located only 5 km apart, revealed significantly different geomorphological responses. The steeper shoreface at West Strand responded with extensive sediment deposition across almost the entire shoreface, in contrast with the more dissipative and quasi‐linear shoreface at Portstewart, which mostly showed nearshore bar changes. Results from the two sites, which have similar wave/wind characteristics and seabed sediments, suggest that: (i) cross‐shore morphology, (ii) immediately previous (antecedent) shoreface morphodynamic behaviour and (iii) the presence, or lack of, offshore sand appear to be the primary controls on storm‐driven sedimentary changes attributed to the high‐energy event. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Deposits of late‐Holocene beach sand buried conifer forests episodically emerge on beaches of the Oregon coast. Simultaneously, sand dunes buried late‐Holocene forests growing on marine terraces landward of the beaches. Dune ramps, up to 60 m in elevation, connected the beach and dune deposits. The average age of wood samples from stumps rooted on the shore platforms is 3·07 ± 1·45 ka. The average age of wood and charcoal samples embedded in forest soil on the marine terraces is 3·27 ± 1·46 ka. Between 1994 and 2006, winter storm waves exposed more than 4·5 km2 of late‐Holocene forest soil on shore platforms at 19 localities. Rooted stumps without soil were uncovered at an additional 14 localities. Once exposed, wave action eroded the soil rapidly (one to two years). The intact forest soil and roots on the shore platforms must have been nearly continuously buried, protected and preserved prior to recent exposure. The late‐Holocene buried forest provides the basis for a conceptual model of coastal evolution. A three stage reversal of erosion and sand supply must have occurred: (1) wave erosion switched to seaward advancement of forests, (2) forest growth and soil development switched to burial beneath beach and dune sand and (3) burial and preservation switched to wave erosion, truncation of dune ramps and landward retreat of sea cliffs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The hypothesis tested in this study is that ice‐scars recorded by lakeshore tree stands can be used as an integrative proxy indicator of the overall hydrodynamic disturbance regimes affecting northern lakeshores. A 2‐km‐long shore segment was divided into 21 sections according to shore orientation and slope. An ice‐scar chronology and a wave exposure index value were obtained for each shore section. A significant relationship was found between ice‐scar chronology and wave exposure index, which indicates that the mechanical action and physical force of ice activity mainly depend on the same environmental factors determining exposure to wave action (i.e. fetch, wind direction and velocity, and shore slope). The spatial and temporal variability of ice‐scar chronology features also corresponded to the distribution of geomorphological features associated with ice activity along the shoreline. Analysis of the hydrological signal associated with these ice‐scar chronology features indicated that an increase in ice‐push frequency observed in the 1930s can be associated to an increase in wave action related to more frequent spring floods maintaining high lake levels during the ice‐free period. This study demonstrates that ice‐scars have strong potential as proxy indicators of shore exposure and provide a temporal frame to reconstruct the history of lakeshore disturbance regimes at a local scale. Together, ice‐scars and wave exposure index provide essential information to interpret the evolution of lakeshore vegetation mosaics in time and space. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Sea stacks are common and striking coastal landforms, but few details are known about how, how quickly, and under what conditions they form. We present numerical and analytical models of sea stack formation due to preferential erosion along a pre‐existing headland to address these basic questions. On sediment‐rich rocky coasts, as sea cliffs erode and retreat, they produce beach sediment that is distributed by alongshore sediment transport and controls future sea cliff retreat rates. Depending on their width, beaches can encourage or discourage sea cliff erosion by acting either as an abrasive tool or a protective cover that dissipates wave energy seaward of the cliff. Along the flanks of rocky headlands where pocket beaches are often curved and narrow due to wave field variability, abrasion can accelerate alongshore‐directed sea cliff erosion. Eventually, abrasion‐induced preferential erosion can cut a channel through a headland, separating it from the mainland to become a sea stack. Under a symmetrical wave climate (i.e. equal influence of waves approaching the coastline from the right and from the left), numerical and analytical model results suggest that sea stack formation time and plan‐view size are proportional to preferential erosion intensity (caused by, for example, abrasion and/or local rock weakness from joints, faults, or fractures) and initial headland aspect ratio, and that sea stack formation is discouraged when the sediment input from sea cliff retreat is too high (i.e. sea cliffs retreat quickly or are sand‐rich). When initial headland aspect ratio is too small, and the headland is ‘rounded’ (much wider in the alongshore direction at its base than at its seaward apex), the headland is less conducive to sea stack formation. On top of these geomorphic and morphologic controls, a highly asymmetrical wave climate decreases sea stack size and discourages stack formation through rock–sediment interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit adjacent to a cliff coast. The barrier island system is characterized by cross-shore translation and by an alignment of the barrier alongshore alternating directions of barrier-spit progradation in a bidirectional wave field. The recurved spit adjacent to the cliff coast experienced shoreline rotation through proximal erosion and distal lateral accretion in a unidirectional wave climate. The multidecadal shoreline changes were coupled to a slope-based morphological coastal classification. All erosive shores occurred within a narrow range of onshore and offshore coastal slopes. The alongshore variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit.  相似文献   

11.
Spatial backshore processes were investigated through field observations of topography and median sand grain size at a sandy beach facing the Pacific Ocean in Japan. A comparison of the backshore profile and cross‐shore distribution of the median sand grain size in 1999 and 2004 revealed an unusual sedimentary process in which sand was coarsened in a depositional area in the 5‐year period, although sediment is generally coarsened in erosional areas. In support of these observations, monthly spatial field analyses carried out in 2004 demonstrated a remarkable backshore coarsening process triggered by sedimentation in the seaward part of the backshore during a storm event. In order to elucidate mechanisms involved in the backshore coarsening process, thresholds of movable sand grain size under wave and wind actions (a uniform parameter for both these cases) in the onshore and offshore directions were estimated using wave, tide, and wind data. The cross‐shore distributions of the estimated thresholds provided reasonable values and demonstrated a coarsening mechanism involving the intermediate zone around the shoreline under alternating wave and wind actions as a result of which coarse sand was transported toward the seaward part of the backshore by large waves during storms and then toward the landward part by strong onshore winds. The 5‐year backshore coarsening is most certainly explained by repetition of short‐term coarsening mechanisms caused by wave‐induced sand transport occurring from the nearshore to the intermediate zone. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

12.
In this paper we use a numerical model to explore the relative dominance of two main processes in shore platform development: wave erosion; weathering due to wetting and drying. The modelling approach differs from previous work in several aspects, including: the way that it accounts for weathering arising from gradual surficial intertidal rock degradation; subtidal profile shape development; and the consideration of a broad erosion parameter space in which, at either end of the erosion spectrum, shore platform profiles are produced by waves or weathering alone. Results show that in micro‐tidal settings, wave erosion dominates the evolution of (i) shore platforms that become largely subtidal and (ii) sub‐horizontal shore platforms that have a receding seaward edge. Weathering processes dominate the evolution of sub‐horizontal shore platforms with a stable seaward edge. In contrast, sloping shore platforms in mega‐tidal settings are produced across the full range of the process‐dominance spectrum depending on the how the erosional efficacy of wave erosion and weathering are parameterized. Morphological feedbacks control the process‐dominance. In small tidal environments wave processes are strongly controlled by the presence/absence of an abrupt seaward edge, but this influence is much smaller in large tidal environments due to larger water depths particularly at high tides. In large tidal environments, similar shore platform profile geometries can be produced by either wave‐dominant or weathering‐dominant process regimes. Equifinality in shore platform development has been noted in other studies, but mainly in the context of smaller‐scale (centimetre to metre) erosion features. Here we draw attention to geomorphic equifinality at the scale of the shore platform itself. Progress requires a greater understanding of the actual mechanics of the process regimes operating on shore platforms. However, this paper makes a substantial contribution to the debate by identifying the physical conditions that allow clear statements about process dominance. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
The southwest coast of England was subjected to an unusually energetic sequence of Atlantic storms during the 2013/2014 winter, with the 8‐week period from mid‐December to mid‐February representing the most energetic period since at least 1953. A regional analysis of the hydrodynamic forcing and morphological response of these storms along the SW coast of England highlighted the importance of both storm‐ and site‐specific conditions. The key factor that controls the Atlantic storm wave conditions along the south coast of southwest England is the storm track. Energetic inshore wave conditions along this coast require a relatively southward storm track which enables offshore waves to propagate up the English Channel relatively unimpeded. The timing of the storm in relation to the tidal stage is also important, and coastal impacts along the macro‐tidal southwest coast of England are maximised when the peak storm waves coincide with spring high tide. The role of storm surge is limited and rarely exceeds 1 m. The geomorphic storm response along the southwest coast of England displayed considerable spatial variability; this is mainly attributed to the embayed nature of the coastline and the associated variability in coastal orientation. On west‐facing beaches typical of the north coast, the westerly Atlantic storm waves approached the coastline shore‐parallel, and the prevailing storm response was offshore sediment transport. Many of these north coast beaches experienced extensive beach and dune erosion, and some of the beaches were completely stripped of sediment, exposing a rocky shore platform. On the south coast, the westerly Atlantic storm waves refract and diffract to become southerly inshore storm waves and for the southeast‐facing beaches this results in large incident wave angles and strong eastward littoral drift. Many south coast beaches exhibited rotation, with the western part of the beaches eroding and the eastern part accreting. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
A 15‐month data set of daily time‐averaged video images (Argus) has been analyzed to describe the spatial and temporal variability of the rip channels on a multiple‐barred coast at Noordwijk aan Zee, The Netherlands. The landward boundary of the intertidal bars and a proxy of the subtidal bar crest, defined as the intertidal and subtidal bar lines respectively, were derived from the Argus images. Local seaward‐directed deviations of the bar lines represent the cross‐shore and alongshore locations of the rip channels. The average intertidal rip spacing ( ) was 243 m, but the rips were not spaced regularly (σλ/ = 0.47). Some intertidal rips were observed to fill up during falling tide, but the majority remained open. The filled intertidal rip channels had more landward positions and migrated more slowly (2.4 versus 4.6 m/day) in the alongshore direction than the open intertidal rip channels. The number and the alongshore migration rate of open intertidal rip channels increased with the preceding wave heights (r = 0.26, p < 0.01) and alongshore component of the offshore wave power (r = 0.25, p < 0.01), respectively. The shape of the intertidal bar lines was similar to the subtidal bar line shape, suggesting that the intertidal morphology is coupled to the subtidal alongshore variability. The phase of two bar lines could vary from in phase (0°) to out of phase (180°). The phase changes gradually, due to different alongshore migration rates of the intertidal and subtidal bar lines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Analyses of shoreline and bathymetry change near Calais, northern coast of France, showed that shoreline evolution during the 20th century was strongly related with shoreface and nearshore bathymetry variations. Coastal erosion generally corresponds to areas of nearshore seabed lowering while shoreline progradation is essentially associated with areas of seafloor aggradation, notably east of Calais where an extensive sand flat experienced seaward shoreline displacement up to more than 300 m between 1949 and 2000. Mapping of bathymetry changes since 1911 revealed that significant variation in nearshore morphology was caused by the onshore and alongshore migration of a prominent tidal sand bank that eventually welded to the shore. Comparison of bathymetry data showed that the volume of the bank increased by about 10×107 m3 during the 20th century, indicating that the bank was acting as a sediment sink for some of the sand transiting alongshore in the coastal zone. Several lines of evidence show that the bank also represented a major sediment source for the prograding tidal flat, supplying significant amounts of sand to the accreting upper beach. Simulation of wave propagation using the SWAN wave model (Booij et al., 1999) suggests that the onshore movement of the sand bank resulted in a decrease of wave energy in the nearshore zone, leading to more dissipative conditions. Such conditions would have increased nearshore sediment supply, favoring aeolian dune development on the upper beach and shoreline progradation. Our results suggest that the onshore migration of nearshore sand banks may represent one of the most important, and possibly the primary mechanism responsible for supplying marine sand to beaches and coastal dunes in this macrotidal coastal environment.  相似文献   

16.
Extreme wave events in coastal zones are principal drivers of geomorphic change. Evidence of boulder entrainment and erosional impact during storms is increasing. However, there is currently poor time coupling between pre‐ and post‐storm measurements of coastal boulder deposits. Importantly there are no data reporting shore platform erosion, boulder entrainment and/or boulder transport during storm events – rock coast dynamics during storm events are currently unexplored. Here, we use high‐resolution (daily) field data to measure and characterize coastal boulder transport before, during and after the extreme Northeast Atlantic extra‐tropical cyclone Johanna in March 2008. Forty‐eight limestone fine‐medium boulders (n = 46) and coarse cobbles (n = 2) were tracked daily over a 0.1 km2 intertidal area during this multi‐day storm. Boulders were repeatedly entrained, transported and deposited, and in some cases broken down (n = 1) or quarried (n = 3), during the most intense days of the storm. Eighty‐one percent (n = 39) of boulders were located at both the start and end of the storm. Of these, 92% were entrained where entrainment patterns were closely aligned to wave parameters. These data firmly demonstrate rock coasts are dynamic and vulnerable under storm conditions. No statistically significant relationship was found between boulder size (mass) and net transport distance. Graphical analyses suggest that boulder size limits the maximum longshore transport distance but that for the majority of boulders lying under this threshold, other factors influence transport distance. Paired analysis of 20 similar sized and shaped boulders in different morphogenic zones demonstrates that geomorphological control affects entrainment and transport distance – where net transport distances were up to 39 times less where geomorphological control was greatest. These results have important implications for understanding and for accurately measuring and modelling boulder entrainment and transport. Coastal managers require these data for assessing erosion risk. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Coastal barriers are ubiquitous globally and provide a vital protective role to valuable landforms, habitats and communities located to landward. They are, however, vulnerable to extreme water levels and storm wave impacts. A detailed record of sub‐annual to annual; decadal; and centennial rates of shoreline retreat in frontages characterized by both high (> 3 m) and low (< 1 m) dunes is established for a barrier island on the UK east coast. For four storms (2006–2013) we match still water levels and peak significant wave heights against shoreline change at high levels of spatial densification. The results suggest that, at least in the short‐term, shoreline retreat, of typically 5–8 m, is primarily driven by individual events, separated by varying periods of barrier stasis. Over decadal timescales, significant inter‐decadal changes can be seen in both barrier onshore retreat rates and in barrier extension rates alongshore. Whilst the alongshore variability in barrier migration seen in the short‐term remains at the decadal scale, shoreline change at the centennial stage shows little alongshore variability between a region of barrier retreat (at 1.15 m a?1) and one of barrier extension. A data‐mining approach, synchronizing all the variables that drive shoreline change (still water level, timing of high spring tides and peak significant wave heights), is an essential requirement for validating models that predict future shoreline responses under changing sea level and storminess. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
The intertidal drainage channels on a macrotidal bar–trough (ridge‐and‐runnel) beach were monitored during a 17‐day survey. Type 1 channels were persistent, dominantly longshore systems essentially limited to the wide intertidal zone between mean high and low water neap tidal levels. The cumulative length of this channel type fluctuated as a function of topographically controlled through‐flow or flow impedance in troughs, and showed no correlation with the semi‐lunar tidal cycle. Smaller, ephemeral type 2 channels appeared as dominantly cross‐shore systems incising bars on the narrower upper and lower beach zones during spring tides. They disappeared during neap tides through infill by waves and aeolian activity. The only significant phase of type 1 channel mobility occurred during a brief moderate‐energy storm at the start of the survey. The effect of this mobility on beach morphology was inextricably linked to that of waves and currents. Meander bend migration, forced by wave‐ and longshore‐current‐induced migration of a bar during the storm, resulted in important but highly localized morphological change that was only a minor part of an irregular saw‐tooth pattern of change that affected the entire beach profile, and that was largely controlled by wave processes and longshore currents. The flow velocities in channels on this beach are too weak to generate the formation and longshore migration of high‐energy bedforms. Channel mobility and impact on beach morphology are expected to increase under storm conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Gravel beaches are common throughout the high latitudes, but few studies have examined gravel transport rates, in particular at high energy levels, and no studies have quantified gravel transport around headlands. Here, we present the first complete sediment budget, including supra-, inter- and sub-tidal regions of the beach, across multiple headland-separated gravel embayments, combined with hydrodynamic observations, over an extreme storm sequence, representing at least a 1-in-50-year event. Unprecedented erosion was observed (~400 m3 m−1, −6 m vertical), with alongshore flux of 2 × 105 m3, equivalent to annual rates. Total system volume change was determined to the depth of closure and then used to calculate alongshore flux rates. Alongshore wave power was obtained from a wave transformation model. For an open section of coastline, we derive a transport coefficient (CERC formula) of KHs = 0.255 ± 0.05, exceeding estimates in lower-energy conditions by a factor of 5 or more. We apply this coefficient to rocky segments of the shoreline, determining rates of headland bypass from 0 to 31% of potential flux, controlled by headland extent and toe depth. Our results support the hypothesis that gravel is transported more efficiently at higher energy levels and that a variable rate or threshold approach may be required. Complete coverage and varying morphology make this dataset uniquely suited to improving model predictions of gravel shoreline change. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Few studies of wave processes on shore platforms have addressed the hydrodynamic thresholds that control wave transformation and energy dissipation, especially under storm conditions. We present results of a field experiment conducted during a storm on a sub‐horizontal shore platform on the east coast of Auckland, New Zealand. Small (<0.5 m) locally generated waves typically occur at the field site, whereas during the experiment the offshore wave height reached 2.3 m. Our results illustrate the important control that platform morphology has on wave characteristics. At the seaward edge of the platform a scarp abruptly descends beneath low tide level. Wave height immediately seaward of the platform was controlled by the incident conditions, but near the cliff toe wave height on the platform was independent of incident conditions. Results show that a depth threshold at the seaward platform edge > 2.5 times the gravity wave height (0.05–0.33 Hz) is necessary for waves to propagate onto the platform without breaking. On the platform surface the wave height is a direct function of water depth, with limiting maximum wave height to water depth ratios of 0.55 and 0.78 at the centre of the platform and cliff toe, respectively. A relative ‘platform edge submergence’ (water depth/water height ratio) threshold of 1.1 is identified, below which infragravity (<0.05 Hz) wave energy dominates the platform energy spectra, and above which gravity waves are dominant. Infragravity wave height transformation across the platform is governed by the relative platform edge submergence. Finally, the paper describes the first observations of wave setup on a shore platform. During the peak of the storm, wave setup on the platform at low tide (0.21 m) is consistent with measurements from planar sandy beaches, but at higher tidal stages the ratio between incident wave height and maximum setup was lower than expected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号