首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overarching objective of this research was to provide an improved understanding of the role of land use and associated management practices on long‐term water‐driven soil erosion in small agricultural watersheds by coupling the established, physically based, distributed parameter Water Erosion Prediction Project (WEPP) model with long‐term hydrologic, land use and soil data. A key step towards achieving this objective was the development of a detailed methodology for model calibration using physical ranges of key governing parameters such as effective hydraulic conductivity, critical hydraulic shear stress and rill/inter‐rill erodibilities. The physical ranges for these governing parameters were obtained based on in situ observations within the South Amana Sub‐Watershed (SASW) (~26 km2) of the Clear Creek, IA watershed where detailed documentation of the different land uses was available for a period of nearly 100 years. A quasi validation of the calibrated model was conducted through long‐term field estimates of water and sediment discharge at the outlet of SASW and also by comparing the results with data reported in the literature for other Iowa watersheds exhibiting similar biogeochemical properties. Once WEPP was verified, ‘thought experiments’ were conducted to test our hypothesis that land use and associated management practices may be the major control of long‐term erosion in small agricultural watersheds such as SASW. Those experiments were performed using the dominant 2‐year crop rotations in the SASW, namely, fall till corn–no till bean (FTC‐NTB), no till bean–spring till corn (NTB‐STC) and no till corn–fall till bean (NTC‐FTB), which comprised approximately 90% of the total acreage in SASW. Results of this study showed that for all crop rotations, a strong correspondence existed between soil erosion rates and high‐magnitude precipitation events during the period of mid‐April and late July, as expected. The magnitude of this correspondence, however, was strongly affected by the crop rotation characteristics, such as canopy/residue cover provided by the crop, and the type and associated timing of tillage. Tillage type (i.e. primary and secondary tillages) affected the roughness of the soil surface and resulted in increases of the rill/inter‐rill erodibilities up to 35% and 300%, respectively. Particularly, the NTC‐FTB crop rotation, being the most intense land use in terms of tillage operations, caused the highest average annual erosion rate within the SASW, yielding quadrupled erosion rates comparatively to NTB‐STC. The impacts of tillage operation were further exacerbated by the timing of the operations in relation to precipitation events. Timing of operations affected the ‘life‐time’ of residue cover and as a result, the degree of protection that residue cover offers against the water action on the soil surface. In the case of NTC‐FTB crop rotation, dense corn residue stayed on the ground for only 40 days, whereas for the other two rotations, corn residue provided a protective layer for nearly 7 months, lessening thus the degree of soil erosion. The cumulative effects of tillage type and timing in conjunction with canopy/residue cover led to the conclusion that land management practices can significantly amplify or deamplify the impact of precipitation on long‐term soil erosion in small agricultural watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This study aimed to investigate the changing characteristics of microrelief of purple soil and its erosional response during successive stages of water erosion, including splash erosion, sheet erosion, and rill erosion. Methods employed included a rainfall simulator and the use of a laser scanner to generate a digital elevation model. Three artificial tillage practices, including conventional tillage (CT), artificial digging (AD), and ridge tillage (RT), were used to simulate different microrelief patterns. Eighteen artificial rainfall experiments were conducted using three 2 × 1 m boxes with a rainfall intensity of 1.5 mm min?1 on a 15° slope. The results showed that the soil roughness (SR) index values for the tillage slopes were RT > AD > CT. The combined effects of detachment by raindrop impact and transport by run‐off decreased the SR index, whereas rill erosion increased the SR index during rainfall event. Microtopography and drainage networks have strong multifractal behaviours. The multifractal parameters of microtopography reflect the overall characteristics as well as the characteristics of the local soil surface. Within a certain range of threshold values, higher microrelief causes less soil erosion. However, when the parameters of spatial heterogeneity of microtopography exceed the threshold values, a higher degree of microrelief can increase soil erosion. These results help clarify the effect of microtopography on soil erosion and provide a theoretical foundation to guide future tillage practices on sloping farmland of purple soil.  相似文献   

3.
In agricultural basins of the southeastern coastal plain there are typically large disparities between upland soil erosion and sediment delivered to streams. This suggests that colluvial storage and redistribution of eroded soil within croplands is occurring, and/or that processes other than fluvial erosion are at work. This study used soil morphology and stratigraphy as an indicator of erosion and deposition processes in a watershed at Littlefield, North Carolina. Soil stratigraphy and morphology reflect the ways in which mass fluxes associated with cultivation transform the local soils. Fluvial, aeolian and tillage processes were all found to be active in the redistribution of soil. The soil transformations are of five general types. First, erosion and compaction in the cultivated area as a whole result in the thinning of Arenic and Grossarenic Paleudults and Paleaquults to form Arenic, Typic and Aquic Paleudults and Paleaquults. Second, redistribution of surficial material within the fields results in transitions between Arenic and Typic or Aquic subgroups as loamy sand A and E horizons are truncated or accreted. Third, aeolian deposition at forested field boundaries leads to the formation of compound soils with podzolized features. Fourth, sandy rill fan deposits at slope bases create cumulic soils distinct from the loamy sands of the source area or the darker, finer terrace soils buried by the fan deposits. Finally, tillage and fluvial deposition in upland depressions results in the gradual burial of Rains (poorly drained Typic Paleaquults) soils. Results confirm the importance of upland sediment storage and redistribution, and the role of tillage and aeolian processes as well as fluvial processes in the region. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

In this research, we survey soil erosion processes using an index of connectivity and a non-invasive and long-term assessment in situ technique: the improved stock unearthing method (ISUM), for which the vineyard of Castilla La Mancha under tillage management was selected. Our results show, that in 10 years, the total average soil surface level decreased by – 1.6 cm and the total soil mobilization was up to 17.7 Mg ha?1 year?1. The surrounding lands of the survey plot showed meagre connectivity; however, smaller linear features with higher values were found as possible locations for potential rill generation. The survey plot is traversed by one of these linear features. In this inter-row survey, we found relatively low connectivity values. As a conclusion, we confirm that both methods can be useful to assess soil erosion processes in vineyards and detect areas that could increase the desertification as a consequence of non-sustainable soil erosion rates.  相似文献   

6.
Rill erosion is a serious concern in the hilly region of China with purple soil, and maize is extensively cultivated in this region. Evaluations of the dynamic mechanisms of rill erosion in sloping farmland areas are particularly important during the maize growing season to determine whether rill erosion can occur. A new ridge tillage (RT) system was designed using local agricultural methods in China. Twelve artificial rainfall experiments were conducted in three 1 × 2 m experimental plots with a slope of 15°, which is a typical slope in the study area. The rainfall intensities were designated as 1.0, 1.5, and 2.0 mm min?1. The rainfall experiments were performed in the field to determine the characteristics of run‐off and sediment transport related to rill erosion processes during different stages of maize growth and to analyse how hydraulic parameters and the sediment yield of the rill erosion process are related. The results showed that rill flow patterns were mainly classified as subcritical transition flow during all the growth stages of maize. The effects of hydrodynamic parameters on the sediment yield were ordered as follows: Reynolds number > stream power > Froude number > shear stress. The total sediment yield varied by stage as follows: seedling stage > jointing stage > mature stage > tasseling stage. The sediment yield and run‐off rate exhibited a linear relationship that was well described at the hillslope scale. To initiate soil loss in sloping farmland areas with purple soil during the maize growing season, the critical hydrodynamic shear stress and stream power must be at least 46.505 Pa and 1.541 N m?1 s?1, respectively.  相似文献   

7.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

8.
In this paper we quantitatively test the hypothesis that soil freeze–thaw (FT) processes significantly increase the potential for upland hillslope erosion during run‐off events that follow thaw. We selected a highly frost‐susceptible silt to obtain an upper bound on FT effects, and completed three series of six experiments each to quantify differences in soil erosion and rill development in a bare soil following a single FT cycle. Each series represented a specific soil moisture range: 16–18 per cent, 27–30 per cent and 37–40 per cent by volume, with nominal flow rates of 0·4, 1·2 and 2·4 L/min and slopes of 8° and 15°. Each experiment used two identical soil bins: one a control (C) that remained unfrozen, and another that was frozen and thawed once. Standard soil characterization tests did not detect significant differences between the FT and C bins. We measured cross‐sectional geometry of an imposed straight rectangular rill before each experiment, sediment load during and rill cross‐sections after. Changes in cross section provided detailed measures of erosion at specific locations, while sediment load from time series run‐off samples integrated the rill erosion. Several parameters, including average maximum rill width, average maximum rill depth, rill cross‐section depth measures and sediment load, all followed similar trends. Each was greater in the FT than in the C, with values that generally increased with slope and flow. However, soil moisture was the only parameter that affected the FT/C ratios. Average sediment load grouped by soil moisture provided FT/C ratios of 2·4, 3·0 and 5·0 for low, mid and high moisture, respectively. In contrast, a ‘dry’ experiment at 4–5 per cent soil moisture had FT/C of 1·02 for sediment load. These results show a dramatic increase with soil moisture in the rate and quantity of bare soil eroded due to the FT cycle. As both FT and C results were highly sensitive to initial conditions, minimum differences in soil weight, bulk density and soil moisture through each series of experiments were required to achieve consistent results, indicating that rill erosion may be chaotic. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

9.
10.
Soil detachment by rill flow is a key process of rill erosion, modelling this process can help in understanding rill erosion mechanisms. However, many soil detachment models are established on conceptual assumptions rather than experimental data. The objectives of this study were to establish a model of soil detachment by rill flow based on flume experimental data and to quantitatively verify the model. We simulated the process of soil detachment by rill flow in flume experiments with a soil-feeding hopper using loessial soil on steep slopes. Seven flow discharges, six slopes and five sediment loads were combined. Soil detachment capacity, sediment transport capacity, and soil detachment rate by rill flow under different sediment loads were measured. The process of soil detachment by rill flow can be modelled by a dual power function based on soil detachment capacity and transport capacity deficit as variables. The established model exhibited high credibility (NSE=0.97; R2=0.97). The contributions of soil detachment capacity and transport capacity deficit to soil detachment rate by rill flow reached 60% and 36%, respectively. Soil detachment capacity exerted more influence on soil detachment rate than did transport capacity deficit. The performance of the WEPP rill erosion equation is also favourable (NSE=0.95; R2=0.97). The two power exponents in the model we established strengthen the role of soil detachment capacity in soil detachment rate and weaken that for transport capacity deficit. Soil detachment capacity and transport capacity deficit played important roles in the determination of soil detachment rate by rill flow. The results can be applied to implement the numerical modeling and prediction of rill erosion processes on steep loessial hillslopes. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Recent research has indicated the large spatial and temporal variation in soil erosion resistance against concentrated flow (SER). This study analyzes this variability in relation to rill and gully initiation locations on slopes and the downslope eroded volumes. The soil erodibility (Kc) and critical flow shear stress (τcr), were estimated from topsoil properties and correlated to eroded rill and gully volumes and their initiation points on slopes in the Belgian loess belt. Therefore, concentrated flow paths and topsoil properties were measured in their vicinity. The results show that rill and gully initiation points, and hence the lengths of concentrated flow paths, depend on τcr, which is controlled by soil surface conditions and can be predicted from saturated soil shear strength. Soil erosion control measures that increase soil shear strength (e.g. thalweg compaction), can therefore decrease rill and gully lengths. Once a rill or an ephemeral gully is initiated, its cross‐section was found to depend on Kc, which can be estimated from the soil water content, dry bulk density, and the dry density of roots and crop residues incorporated in the topsoil. 74% of the variation in the channel cross‐sectional area measured in the study area could be predicted from the combined effect of flow intensity and these three soil properties, whereas flow intensity alone could only account for 31% of the variation. Soil conservation measures affecting one of the soil properties that control Kc (e.g. double drilling of the thalweg, conservation tillage) can therefore decrease the cross‐sections of the concentrated flow paths. These findings also indicate that rill and gully initiation points are not only topographically controlled but also depend on the SER, which in turn determines the dimensions of these concentrated flow paths. Hence, knowledge of the variability in SER is indispensable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
IntheLoessPlateau,alongtheslopelengthfromthetoptothebottom,soilerosionischaracterizedbyobviousverticalzonaldivision,thatis,sheeterosionzone,sheeterosionandrillerosionzone,rillerosionandshallowgullyerosionzoneandgullyerosionzone.Inthesheetandrillero..sionzone,rillerosionamounttakesup70%ofthetotalsoilloss[TANGKenetal.,1983,ZHENGFenlietal.,19871;intherillandshallowgullyerosionzone,rillerosionamountaccountsfor30--40%ofthetotalsoilloss.Sorillerosionisamajorerosionpatternonsteepslopeland.Riller…  相似文献   

13.
In the region of the basaltic plateau in Southern Brazil, problems of runoff and erosion on the deep ferrallitic soils are becoming increasingly recognized. Land use change from conventional tillage using disk plough to no‐tillage on residues without terracing occurred at the beginning of the 1990s and it spread very quickly. Measurements of runoff and sediment concentrations on 1 m2 plots receiving natural rainfall and simulated rainfall under different crops with different stages of growth and different tillage systems, field surveys and measurements of rills and gullies in nested experimental catchments indicate a relative decrease of runoff on slopes but an increase of subsurface flow, and a marked decrease of sheet and rill erosion and soil loss from plot to catchment scales. Nevertheless, the extension of parts of the gully system is still continuing, strongly influenced by extreme rainfall. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Despite growing interest in soil erosion on agricultural land, relatively little attention has been paid to the influence of erosion processes on the pattern of contemporary landform evolution. This in part reflects the problems associated with up-scaling the results of short-term process studies to temporal and spatial scales relevant to the study of landform evolution. This paper presents a new approach to examining the influence of erosion processes on landform evolution on agricultural land which employs: caesium-137 (137Cs) measurements to provide medium-term (c. 40 years) estimates of rates of landform change; experimental data and a topographic-based model to simulate soil redistribution by tillage; a mass-balance model of 137Cs redistribution to separate the water erosion and tillage components of the 137Cs ‘signatures’; and field observations of water erosion for validation. This approach is used to examine the relative importance of water erosion and tillage processes for contemporary landform evolution at contrasting sites near Leuven, in Belgium, and near Yanan, in Shaanxi Province, China. This application of the approach provides good agreement between the derived water erosion rates and field observations, and hitherto unobtainable insights into medium-term patterns and rates of contemporary landform evolution. At Huldenberg in Belgium, despite rill incision of slope concavities and ephemeral gully incision of the valley floor, contemporary landform evolution is dominated by infilling of slope and valley concavities (rates >0.5 mm a−1) and gradual lowering of slope angles as a result of tillage. In contrast, at Ansai (near Yanan) the slope is characterized by increase in slope angle over most of the length, recession of the steepest section at a rate >5 mm a−1 and by increasing planform curvature. At this site, contemporary landform evolution is dominated by water erosion. The constraints on the approach are examined, with particular attention being given to limitations on extrapolation of the results and to the sensitivity of the models to parameter variation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Rill development studies have focused almost exclusively on surface erosion processes and critical threshold hydraulic conditions. Characteristic rill features, such as arcuate headcuts and knickpoints, are morphologically similar to the ‘theatre-headed’ valleys which have been associated with ‘sapping’ processes at various scales. This paper reports on laboratory experiments designed to identify linkages between surface flow hydraulics, subsurface moisture conditions and rill development. Experiments were carried out in a 16·57 m2 flume under simulated rainfall with soil samples up to 0·15 m depth in which moisture conditions were monitored by miniature time-domain reflectometer probes. Tests showed complex responses in which some rill incision reflected surface flow conditions, but major rill system development with markedly enhanced sediment yield was closely associated with high soil moisture contents. It was not possible to measure seepage forces directly, but calculation and observation indicate that these were less important than reduction in soil strength with saturation, which resulted in increased effective runoff erosivity. This caused concentrated undercutting along the water table at rill walls, while slightly stronger surface layers above the water table formed microscarps. These retreated along the water table into interrill surfaces, producing residual pediment transport slopes. The microscarps eventually disappeared when the water table reached the surface, eliminating differential soil strength. The experiments showed complex relationships between surface and subsurface erosional processes in evolving rill systems, strongly influenced by soil moisture dynamics. The very small topographic and hydraulic head amplitudes indicate that seepage forces and ‘sapping’ were minimal. The dominant effect of soil moisture was reduction of soil strength with saturation, and increased runoff entrainment. Experimental conditions were not unusual, either for agricultural fields or natural hillslopes, and the intricate interrelationship of surface and subsurface erosion processes observed is probably not uncommon. Attempts to link specific morphologic features at rill scale to dominance of surface or subsurface processes alone are therefore unlikely to be successful or reliable. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Soil‐mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This study sought to monitor erosion processes within an experimental landscape filled with packed homogenous soil, which was exogenically forced by rainfall and base level adjustments, and to define the temporal and spatial variation of the erosion regimes. Close‐range photogrammetry and terrain analysis were employed as the primary methods to discriminate these erosion regimes. Results show that (1) four distinct erosion regimes can be identified (raindrop impact, sheet flow, rill, and gully), and these regimes conformed to an expected trajectory of landscape evolution; (2) as the landscape evolved, the erosion regimes varied in areal coverage and in relative contribution to total sediment efflux measured at the outlet of the catchment; and (3) the sheet flow and rill erosion regimes dominated the contributions to total soil loss. Disaggregating the soil erosion processes greatly facilitated identifying and mapping each regime in time and space. Such information has important implications for improving soil erosion prediction technology, for assessing landscape degradation by soil erosion, for mapping regions vulnerable to future erosion, and for mitigating soil losses and managing soil resources. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Changes in thawed depth of frozen soil caused by diurnal and seasonal temperature fluctuations are commonly found in high altitude and latitude regions of the world. These changes significantly influence hydrologic and erosion processes. Experimental data are necessary to improve the understanding and modeling of the phenomenon. Laboratory experiments were conducted in Beijing to assess the impacts of thawed soil depth, slope gradient, and flow rate on soil erosion by concentrated meltwater flow over an underlying frozen soil layer. Soil samples from watershed were filled in flumes, saturated before being frozen. After the soil was completely frozen, flumes were taken out of storage to thaw the frozen soil from top to the designed depths. Meltwater flow was simulated using a tank filled with water and icecubes at approximately 0°C. The erosion experiments involved four thawed soil depths of 1, 2, 5, and 10 cm; three slope gradients of 5°, 10°, and 15°; and three flow rates of 1, 2, and 4 l/min; and seven rill lengths of 0.5, 1, 2, 3, 4, 5, and 6 m. Sediment‐laden water samples were collected at the lower end of the flume for determination of sediment concentration. The results showed that sediment concentration increased exponentially with rill length to approach a maximum value. The sediment concentrations were closely correlated with thawed soil depth, flow rate, and slope gradient. Shallower thawed depths delivered more sediments than deeper thawed depths. Slope gradient was the primary factor responsible for severe erosion. The effect of flow rate on sediment concentration which decreased with increasing slope gradient, was not as significant as that of slope gradient. Results from these experiments are useful for understanding the effect of thawed soil depth on erosion process in thawed soils subject to freezing and for estimating erosion model parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper the results of a field investigation on rilling carried out in the experimental Sparacia area are reported. The measurements were made on a plot 6 m wide and 22 m long subjected to natural rainfalls. For ten rainfalls the total soil loss (interrill and rill erosion) was collected in a storage system consisting of two tanks arranged in series at the base of the plot. Rill morphology (rill length and cross‐sections) was measured for five rainfall events, while the rill profile was surveyed for three events. First the contribution of each component (rill and interrill erosion) to total soil loss was established. Then the analysis allowed establishment of a power relationship between the rill length and the rill volume. Finally, for three events detailed information on rill erosion and rill morphology allowed verification of the applicability of WEPP and estimation of the rill erodibility constant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号