首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Confluences are important locations for river mixing within drainage networks, yet few studies have examined in detail the dynamics of mixing within confluences. This study examines the influence of momentum flux ratio, the scale of the flow (cross‐sectional area) and the density differences between incoming flows on thermal mixing at a small stream confluence. Results reveal that rates and patterns of thermal mixing depend on event‐specific combinations of the three factors. The mixing interface at this confluence is generally distorted towards the mouth of the lateral tributary by strong helical motion associated with curvature of flow from the lateral tributary as it aligns with the downstream channel. As the momentum flux from the lateral tributary increases, mixing is enhanced because helical motion from the curving tributary flow expands over the width of the downstream channel. The cross‐sectional area of the flow is negatively correlated with mixing rates, suggesting that the amount of mixing over a fixed distance downstream of the confluence is inversely related to the scale of the flow. Density differences are not strongly related to rates of mixing. Results confirm that mixing rates within the region of confluent flow interaction can be highly variable among flow events with different incoming flow conditions, but that, in general, length scales of mixing are short, and rates of mixing are high at this small confluence compared with those typically documented at large‐river confluences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three‐dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one‐third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Tian Zhou  Ted Endreny 《水文研究》2012,26(22):3378-3392
River restoration projects have installed j‐hook deflectors along the outer bank of meander bends to reduce hydraulic erosion, and in this study we use a computational fluid dynamics (CFD) model to document how these deflectors initiate changes in meander hydrodynamics. We validated the CFD with streamwise and cross‐channel bankfull velocities from a 193° meander bend flume (inlet at 0°) with a fixed point bar and pool equilibrium bed but no j‐hooks, and then used the CFD to simulate changes to flow initiated by bank‐attached boulder j‐hooks (1st attached at 70°, then a 2nd at 160°). At bankfull and half bankfull flow the j‐hooks flattened transverse water surface slopes, formed backwater pools upstream of the boulders, and steepened longitudinal water slopes across the boulders and in the conveyance region off the mid‐channel boulder tip. Streamwise velocity and mass transport jets upstream of the j‐hooks were stilled, mid‐channel jets were initiated in the conveyance region, eddies with a cross‐channel axis formed below boulders, and eddies with a vertical axis were shed into wake zones downstream of the point bar and outer bank boulders. At half bankfull depth conveyance region flow cut toward the outer bank downstream of the j‐hook boulders and the secondary circulation cells were reshaped. At bankfull depth the j‐hook at 160° was needed to redirect bank‐impinging flow sent by the upstream j‐hook. The hooked boulder tip of both j‐hooks funneled surface flow into mid‐channel plunging jets, which reversed the secondary circulation cells and initiated 1 to 3 counter rotating cells through the entire meander. The main outer bank collision zone centered at 50° without the j‐hook was moved by the j‐hook to within and just beyond the 70° j‐hook boulder region, which displaced other mass transport zones downstream. J‐hooks re‐organized water surface slopes, streamwise and cross‐channel velocities, and mass transport patterns, to move shear stress from the outer bank and into the conveyance and mid‐channel zones at bankfull flow. At half bankfull flows a patch of high shear re‐attached to the outer bank below the downstream j‐hook. J‐hook geometry and placement within natural meanders can be analyzed with CFD models to help restoration teams reach design goals and understand hydraulic impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The evolution of meander bends and formation of cutoffs, including a series of cutoffs developed simultaneously in a number of bends, have been investigated by many researchers. However, relatively little is known about factors that lead to the development of multiple cutoffs that are formed subsequently at one location. The present study aims to determine the influence of meander bend development on multiple chute cutoff formation in a single bend. The research is based on the sedimentary record of meander migration and cutoffs preserved in a lowland river floodplain (the lower Obra River, Poland). Analysis of changes in meander geometry was conducted to describe the influence of their migration on cutoff formation and in other rivers where multiple cutoffs occurred. The results showed that multiple cutoffs in the lower Obra River have occurred during the last 3000 years, owing to the interaction of upstream and downstream controls: migration of meander bends in opposing directions accompanied by an increase of flood frequency and sediment supply. The flow and sediment supply has been further altered since the nineteenth century due to anthropogenic impacts: an artificial cutoff of the downstream bend and elevation of channel levées. Similar mechanisms driving the formation of multiple cutoff have been found in other river courses, despite significantly higher energy of the compared rivers. Moreover, development of a confined‐shape bend (caused by artificial barrier or autogenic bend behaviour) may also favour the formation of multiple cutoffs. However, counter migration of meanders enhanced by increased flood frequency and sediment supply are primary triggers for such events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Confluences with low discharge and momentum ratios, where narrow steep tributaries with high sediment load join a wide low‐gradient main channel that provides the main discharge, are often observed in high mountain regions such as in the upper‐Rhone river catchment in Switzerland. Few existing studies have examined the hydro‐morphodynamics of this type of river confluence while considering sediment discharge in both confluent channels. This paper presents the evolution of the bed morphology and hydrodynamics as observed in an experimental facility with a movable bed. For that purpose, one experiment was carried out in a laboratory confluence with low discharge and momentum ratios, where constant sediment rates were supplied to both flumes. During the experiment, bed topography and water surface elevations were systematically recorded. When the bed topography reached a steady state (so‐called equilibrium) and the outgoing sediment rate approximated the incoming rate, flow velocity was measured at 12 different points distributed throughout the confluence, and the grain size distribution of the bed surface was analyzed. Typical morphodynamic features of discordant confluences such as a bank‐attached bar and a flow deflection zone are identified in this study. Nevertheless, the presence of a marked scour hole in the discordant confluence and distinct flow regimes for the tributary and main channel, differ from results obtained in previous studies. Strong acceleration of the flow along the outer bank of the main channel is responsible for the scour hole. This erosion is facilitated by the sediment discharge into the confluence from the main channel which inhibits bed armoring in this region. The supercritical flow regime observed in the tributary is the hydrodynamic response to the imposed sediment rate in the tributary. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This study reports the results of a large woody debris (LWD) removal experiment in a meander bend along a low‐energy stream in the Midwestern United States. The LWD obstacle was located in the center of the channel at the bend exit and consisted of a mature tree with an intact soil‐covered root wad and a large accumulation of logs, branches and pieces of lumber on top of and adjacent to the main tree. The results indicate that the LWD obstruction influenced 3D flow structure in this bend at all flow stages. The main effect of LWD is to dramatically decelerate flow throughout the majority of the bend, while locally accelerating flow where it passes through the narrow chute at the downstream end of the LWD obstruction. Results from the LWD removal experiment indicate that patterns of three‐dimensional flow structure in meander bends are sensitive to complete removal of LWD. After the removal of LWD from the bend, both downstream and secondary velocities increased and, though still weak, secondary flow intensified. Large, relatively stable, obstructions that span a significant portion of the channel may act as natural dams, effectively ponding water upstream of the LWD, thereby producing substantial convective deceleration of the flow. This research is the first to document three‐dimensional flow structure before and after a controlled removal of LWD from a meander bend. Studies of the type reported here represent a first step toward determining the ensemble of process interactions between LWD and bend dynamics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Channel meander dynamics in fluvial systems and many tidal systems result from erosion of concave banks coupled with sediment deposition on convex bars. However, geographic information system (GIS) analysis of historical aerial photographs of the Skagit Delta marshes provides examples of an alternative meander forming process in a rapidly prograding river delta: deposition‐dominated tidal channel meander formation through a developmental sequence beginning with sandbar formation at the confluence of a blind tidal channel and delta distributary, proceeding to sandbar colonization and stabilization by marsh vegetation to form a marsh island opposite the blind tidal channel outlet, followed by narrowing of the gap between the island and mainland marsh, closure of one half of the gap to join the marsh island to the mainland, and formation of an approximately right‐angle blind tidal channel meander bend in the remaining half of the gap. Topographic signatures analogous to fluvial meander scroll bars accompany these planform changes. Parallel sequences of marsh ridges and swales indicate locations of historical distributary shoreline levees adjacent to filled former island/mainland gaps. Additionally, the location of marsh islands within delta distributaries is not random; islands are disproportionately associated with blind tidal channel/distributary confluences. Furthermore, blind tidal channel outlet width is positively correlated with the size of the marsh island that forms at the outlet, and the time until island fusion with mainland marsh. These observations suggest confluence hydrodynamics favor sandbar/marsh island development. The transition from confluence sandbar to tidal channel meander can take as little as 10 years, but more typically occurs over several decades. This depositional blind tidal channel meander formation process is part of a larger scale systemic depositional process of delta progradation that includes distributary elongation, gradient reduction, flow‐switching, shoaling, and narrowing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of ice cover on flow characteristics in meandering rivers are still not completely understood. Here, we quantify the effects of ice cover on flow velocity, the vertical and spatial flow distribution, and helical flow structure. Comparison with open‐channel low flow conditions is performed. An acoustic doppler current profiler (ADCP) is used to measure flow from up to three meander bends, depending on the year, in a small sandy meandering subarctic river (Pulmanki River) during two consecutive ice‐covered winters (2014 and 2015). Under ice, flow velocities and discharges were predominantly slower than during the preceding autumn open‐channel conditions. Velocity distribution was almost opposite to theoretical expectations. Under ice, velocities reduced when entering deeper water downstream of the apex in each meander bend. When entering the next bend, velocities increased again together with the shallower depths. The surface velocities were predominantly greater than bottom/riverbed velocities during open‐channel flow. The situation was the opposite in ice‐covered conditions, and the maximum velocities occurred in the middle layers of the water columns. High‐velocity core (HVC) locations varied under ice between consecutive cross‐sections. Whereas in ice‐free conditions the HVC was located next to the inner bank at the upstream cross‐sections, the HVC moved towards the outer bank around the apex and again followed the thalweg in the downstream cross‐sections. Two stacked counter‐rotating helical flow cells occurred under ice around the apex of symmetric and asymmetric bends: next to the outer bank, top‐ and bottom‐layer flows were towards the opposite direction to the middle layer flow. In the following winter, no clear counter‐rotating helical flow cells occurred due to the shallower depths and frictional disturbance by the ice cover. Most probably the flow depth was a limiting factor for the ice‐covered helical flow circulation, similarly, the shallow depths hinder secondary flow in open‐channel conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Although river confluences have received geomorphic attention in recent years it is difficult to upscale these studies, so confluence‐dominated reaches are commonly presumed to be either: (1) braided; or (2) meandering and characterized by laterally migrating channels. If the geomorphology of a confluence zone is to be considered over longer timescales, changes in river style need to be taken into account. This paper uses a combination of remote sensing techniques (LiDAR, GPR, ER), borehole survey and chronometric dating to test this differentiation in the confluence‐zone of a medium‐sized, mixed‐load, temperate river system (Trent, UK), which on the basis of planform evidence appears to conform to the meandering model. However, the analysis of ‘confluence sediment body stratigraphy’ demonstrates that the confluence does not correspond with a simple meander migration model and chronostratigraphic data suggests it has undergone two major transformations. Firstly, from a high‐energy braid‐plain confluence in the Lateglacial (25–13 K yrs cal BP), to a lower‐energy braided confluence in the early to middle Holocene (early Holocene‐2.4 kyr BP), which created a compound terrace. Second, incision into this terrace, creating a single‐channel confluence (2.4–0.5 kyr cal BP) with a high sinuosity south bank tributary (the River Soar). The confluence sediment‐body stratigraphy is characterized by a basal suite of Late Pleistocene gravels bisected by younger channel fills, which grade into the intervening levee and overbank sediments. The best explanation for the confluence sediment body stratigraphy encountered is that frequent switching (soft‐avulsions sensu Edmonds et al., 2011) of the tributary are responsible for the downstream movement of the channel confluence (at an average rate of approximately 0.5 m per year) dissecting and reworking older braid‐plain sediments. The late Holocene evolution of the confluence can be seen as a variant of the incisional‐frequent channel reorganization (avulsion) model with sequential downstream migration of the reattachment point. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Knowledge of locomotion of fish near river confluences is important for prediction of fish distribution in a river network.The flow separation zone near the confluence of a river network is a favorite habitat and feeding place for silver carp,which is one of the four major species of Chinese carp and usually provides positive rheotaxis to water flow.In the current study,a series of laboratory experiments were done to determine the behavioral responses of juvenile silver carp to the hydrodynamic ...  相似文献   

13.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid‐channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22° to 42°) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

Accurate assessment of stage–discharge relationships in open channel flows is important to the design and management of hydraulic structures and engineering. Flow junctions commonly occur at the confluence of natural rivers or streams. The effect of flow junctions on the stage–discharge relationship at mountain river confluences was found by measuring velocity fields and water levels in experimental models. The results show that the backwater and accumulation–separation at flow junctions affect the flow structures and patterns in the channel; also, flow confluences may induce complex flow characteristics of backwater and flow separation at river junctions, indicating potential submerged flooding disasters within the confluence zone. The impacts of flow junctions on the stage–discharge relationship are investigated for two physical confluence models built from river confluence prototype systems in southwest China. The results show that the presence of tributary river inflows tends to increase the water level of the main river. This is important for flood control, flood-risk evaluation and engineering (e.g. hydropower station construction) in mountain rivers. Finally, a comparative quantitative analysis based on flow motion equations is conducted to evaluate the stage–discharge relationship in both uniform and regular confluence systems. The results indicate that more accurate prediction can be made when taking into account the flow non-uniformity induced by flow separation, backwater and distorted bed in the junction region.  相似文献   

16.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   

17.
Previous process-oriented field studies of stream confluences have focused mainly on fluvial dynamics at or immediately downstream of the location where the confluent flows enter the downstream channel. This study examines in detail the spatial evolution of the time-averaged downstream velocity, cross-stream velocity, and temperature fields between the junction apex, where the flows initially meet, and the entrance to the downstream channel. A well-defined, vertically oriented mixing interface exists within this portion of the confluence, suggesting that lateral mixing of the incoming flows is limited. The downstream velocity field near the junction apex is characterized by two high-velocity cores separated by an intervening region of low-velocity or recirculating fluid. In the downstream direction, the high-velocity cores move inwards towards the mixing interface and high-velocity fluid progressively extends downwards into a zone of scour, resulting in an increase in flow velocity in the centre of the confluence. The cross-stream velocity field is dominated by flow convergence, but also includes a component associated with a consistent pattern of secondary circulation. This pattern is characterized by two surface-convergent helical cells, one on each side of the mixing interface. The helical cells appear to be the mechanism by which high-momentum fluid near the surface is advected downwards into the zone of scour. For transport-ineffective flows, the dimensions and intensities of the cells are controlled by the momentum ratio of the confluent streams and by the extant bed morphology within the confluence. Although the flow structure of formative events was not measured directly in this study, documented patterns of erosion and deposition within the central region of the confluence suggest that these events are dynamically similar to the measured flows, except for the fact that formative flows are not constrained by, but can reshape, the bed morphology. The results of this investigation are consistent with and augment previous findings on time-averaged flow structure in the downstream portion of the confluence. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The morphological evolution of the entrances and exits of abandoned river channels governs their hydrological connectivity. The study focusses on flow and sediment dynamics in the exit of a cutoff meander where the downstream entrance is still connected to the main channel, but the upstream entrance is closed. Two similar field and laboratory cases were investigated using innovative velocimetry techniques (acoustic Doppler profiling, image analysis). Laboratory experiments were conducted with a mobile‐bed physical model of the Morava River (Slovakia). Field measurements were performed in the exit of the Port‐Galland cutoff meander, Ain River (France). Both cases yielded consistent and complementary results from which a generic scheme for flow patterns and morphological evolution was derived. A simple analogy with flows in rectangular side cavities was used to explain the recirculating flow patterns which developed in the exit. A decelerating inflow deposits bedload in the downstream part of the cavity, while the upstream part is eroded by an accelerating outflow, leading to the retreat of the upstream bank. In the field, strong secondary currents were observed, especially in the inflow, which may enhance the scouring of the downstream corner of the cavity. Also, fine sediment deposits constituted a silt layer in a transitional zone, located between the mouth of the abandoned channel and the oxbow‐lake within the cutoff meander. Attempts at morphological prediction should consider not only the flow and sediment conditions in the cavity, but also the dynamics of the main channel. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

20.
In this paper,the evolutions of flow pattern and sediment transportation at a 90° open-channel confluence with different discharge ratios (q*) of the tributary flow to the total flow were studied.The e...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号