首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The steel reinforced concrete (SRC) wall consists of structural steel embedded at the boundary elements of a reinforced concrete (RC) wall. The use of SRC walls has gained popularity in the construction of high‐rise buildings because of their superior performance over conventional RC walls. This paper presents a series of quasi‐static tests used to examine the behavior of SRC walls subjected to high axial force and lateral cyclic loading. The SRC wall specimens showed increased flexural strength and deformation capacity relative to their RC wall counterpart. The flexural strength of SRC walls was found to increase with increasing area ratio of embedded structural steel, while the section type of embedded steel did not affect the wall's strength. The SRC walls under high axial force ratio had an ultimate lateral drift ratio of approximately 1.4%. In addition, a multi‐layer shell element model was developed for the SRC walls and was implemented in the OpenSees program. The numerical model was validated through comparison with the test data. The model was able to predict the lateral stiffness, strength and deformation capacities of SRC walls with a reasonable level of accuracy. Finally, a number of issues for the design of SRC walls are discussed, along with a collection and analysis of the test data, including (1) evaluation of flexural strength, (2) calculation of effective flexural stiffness, and (3) inelastic deformation capacity of SRC walls. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Numerous non‐ductile reinforced concrete (RC) buildings with little or no shear reinforcement in beam‐column joints can be found in regions of moderate seismicity. To strengthen such substandard beam‐column joints, this study proposes a method in which RC wing walls are installed beside existing columns, which overcomes the lack of realistic strengthening methods for congested connections in RC buildings. The proposed strengthening mechanism improves the joint moment capacity by utilizing tension and compression acting on the beam–wing wall boundaries; thus, brittle joint hinging failure is prevented. Three 3/4‐scale RC exterior beam‐column joint specimens without shear reinforcement, two of which were strengthened by installing wing walls with different strengthening elements, were fabricated and tested. The test results verified the effectiveness of the proposed strengthening method and the applicability of this method to seismically substandard beam‐column joints. © 2017 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

4.
A three‐dimensional beam–truss model (BTM) for reinforced concrete (RC) walls that explicitly models flexure–shear interaction and accurately captures diagonal shear failures was presented in the first part of this two‐paper series. This paper extends the BTM to simulate RC slabs and coupled RC walls through slabs and beams. The inclination angle of the diagonal elements for coupled RC walls is determined, accounting for the geometry of the walls and the level of coupling. Two case studies validate the model: (1) a two‐bay slab–column specimen experimentally tested using cyclic static loading and (2) a five‐story coupled T‐wall–beam–slab specimen subjected to biaxial shake table excitation. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally measured response and observed damage. The five‐story specimen is characterized by diagonal shear failure at the bottom story of the walls, which is captured by the BTM. The BTM of the five‐story specimen is used to study the effects of coupling on shear demand for lightly reinforced RC coupled walls. The effect of mesh refinement and bar fracture of non‐ductile transverse reinforcement is studied. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
钢筋混凝土带暗支撑核心简体抗震性能试验研究   总被引:13,自引:3,他引:10  
本文在带暗支撑剪力墙研究的基础上,进一步提出了带暗支撑核心筒体,通1/6缩尺的1个带暗支撑筒体结构和1个普通筒体结构的低周反复荷载试验,比较分析了它们的承载力、刚度、延性、滞回特性、耗能能力及破坏机制。试验表明,带暗支撑筒体比普通筒体的抗震性能明显提高。  相似文献   

6.
截面中部配置型钢的混凝土剪力墙抗震性能研究   总被引:16,自引:2,他引:14  
本文通过试验研究了型钢混凝土(SRC)剪力墙的抗震性能,对16个试件进行了低周反复加载试验,得到了这些构件的延性比;研究了高宽比等参数对型钢混凝土剪力墙抗震性能的影响。在试验中,研究了在中部配置型钢的型钢混凝土剪力墙,结果表明这种新型的型钢混凝土剪力墙具有更好的抗震性能。在试验的基础上,本文建立了型钢混凝土剪力墙恢复力骨架曲线的数学模型,为分析高层结构的非线性地震反应分析提供了基础数据。  相似文献   

7.
The steel tube‐reinforced concrete (ST‐RC) composite column is a novel type of composite column, which consists of a steel tube embedded in RC. In this paper, the seismic behavior of ST‐RC columns is examined through a series of experiments in which 10 one‐third scale column specimens were subjected to axial forces and lateral cyclic loading. The test variables include the axial force ratio applied to the columns and the amount of transverse reinforcement. All specimens failed in a flexural mode, showing stable hysteresis loops. Thanks to the steel tube and the high‐strength concrete it is filled with, the ST‐RC column specimens had approximately 30% lower axial force ratios and 22% higher maximum bending moments relative to the comparable RC columns when subjected to identical axial compressive loads. The amount of transverse reinforcement made only a small difference to the lateral load‐carrying capacity but significantly affected the deformation and energy dissipation capacity of the ST‐RC columns. The specimens that satisfied the requirements for transverse reinforcement adopted for medium ductile RC columns as specified by the Chinese Code for Seismic Design of Buildings (GB 50011‐2010) and EuroCode 8 achieved an ultimate drift ratio of around 0.03 and a displacement ductility ratio of approximately 5. The design formulas used to evaluate the strength capacity of the ST‐RC columns were developed on the basis of the superposition method. The predictions from the formulas showed good agreement with the test results, with errors no greater than 10%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
李然 《地震工程学报》2018,40(5):891-896
隔震器与填充墙对建筑抗震性能有很大作用。为了探究填充墙布置形式及填充材料和隔震器协同作用对钢筋混凝土框架结构动力特性及抗震性能的影响,采用等效斜撑理论,对3种不同填充墙布置形式与隔震器协同作用的抗震系统方案进行对比分析,研究发现顶层不布置填充墙与隔震器协同抗震系统钢筋混凝土框架结构的抗震性能最佳。在此系统上分析了不同填充材料对钢筋混凝土框架结构抗震性能的影响,结果表明,加气混凝土砌块填充墙的钢筋混凝土框架结构抗震性能最好。  相似文献   

9.
Earthquake simulation tests were conducted on a 1 : 15‐scale 25‐story building model to verify the seismic performance of high‐rise reinforced‐concrete flat‐plate core‐wall building structures designed per the recent seismic code KBC 2009 or IBC 2006. The following conclusions can be drawn from the test results: (1) The vertical distribution of acceleration during the table excitations revealed the effect of the higher modes, whereas free vibration after the termination of the table excitations was governed by the first mode. The maximum values of base shear and roof drift during the free vibration are either similar to or larger than the values of the maximum responses during the table excitation. (2) With a maximum roof drift ratio of 0.7% under the maximum considered earthquake in Korea, the lateral stiffness degraded to approximately 50% of the initial stiffness. (3) The crack modes appear to be a combination of flexure and shear in the slab around the peripheral columns and in the coupling beam. Energy dissipation via inelastic deformation was predominant during free vibration after the termination of table excitation rather than during table excitation. Finally, (4) the walls with special boundary elements in the first story did not exhibit any significant inelastic behavior, with a maximum curvature of only 21% of the ultimate curvature, corresponding to an ultimate concrete compressive strain of 0.00638 m/m intended in the displacement‐based design approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
型钢混凝土剪力墙的抗震性能研究   总被引:2,自引:1,他引:1  
型钢混凝土剪力墙(亦称为SRC剪力墙)是一种新型的剪力墙,其抗弯承载力、抗剪承载力及延性均好于普通剪力墙。本文简要总结了近年来国内外关于型钢混凝土剪力墙抗震研究的成果。在此基础上,进行了较高轴压比下内藏钢桁架混凝土组合高剪力墙的抗震性能试验研究。试验研究表明,内藏钢桁架的存在明显改善了高轴压比下型钢混凝土高剪力墙的抗震性能。  相似文献   

11.
钢筋混凝土核心筒体抗震性能试验研究   总被引:17,自引:5,他引:17  
本文对两组五个钢筋混凝土核心筒试件进行了低周反复荷载试验,研究了不同轴压比和剪跨比的核心筒破坏机理、承载能力、延性和耗能能力等方面的抗震性能。结果表明,轴压比对核心筒的抗震性能有较大影响。  相似文献   

12.
This paper presents an analytical investigation on the seismic design and response of coupled wall structures that use unbonded post‐tensioned steel coupling beams. Both monolithic cast‐in‐place reinforced concrete wall piers and precast concrete wall piers are considered. Steel top and seat angles are used at the coupling beam ends for energy dissipation. The seismic design of prototype structures to achieve target displacement‐based performance objectives is evaluated based on nonlinear static and dynamic time history analyses. Additional recommendations are provided on shear design. Comparisons with ‘conventional’ structures that use embedded steel coupling beams as well as isolated walls with no coupling are provided. The results indicate that while the peak lateral displacements of unbonded post‐tensioned coupled wall structures are larger than the peak displacements of structures with embedded beams, the residual displacements are significantly reduced as a result of the restoring effect of the post‐tensioning steel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
周忠发  赵均 《地震学刊》2010,(6):660-666
运用ABAQUS分析软件,建立水平荷载作用下的钢筋混凝土核心筒有限元模型,进行非线性分析,并将分析结果与大比例试件的试验结果对比,对所采用的有限元模型加以验证。在此基础上,进行改变钢筋混凝土核心筒轴压比、高宽比和筒壁厚度的受力过程模拟分析,研究这些参数对筒体性能的影响。结果表明:随着轴压比的增大,筒体的破坏由受拉向受压破坏转变,筒体最大水平承载力经历先增加后减小的变化,延性变差;随着高宽比的增大,筒体破坏形态由剪切向弯曲破坏转变,延性增加,整体弯曲作用更加明显,最大底部剪力减小;随着壁厚的增大,试件破坏由截面压屈失稳向墙肢底部受弯破坏转变,墙肢破坏区域沿高度方向发展,耗能能力更强,承载力明显增大,变形能力显著增加。  相似文献   

14.
The objective of this study is to investigate the effect of boundary element details of structural walls on their deformation capacities. Structural walls considered in this study have different sectional shapes and/or transverse reinforcement content at the boundaries of the walls (called boundary element details hereafter). Four full‐scale wall specimens (3000mm (hw)×1500mm (lw)×200mm (T)) were fabricated and tested. Three specimens are rectangular in section and the other specimen has a barbell‐shaped cross‐section (a wall with boundary columns). The rectangular wall specimens are reinforced according to the common practice used for reinforced concrete residence buildings in Korea and Chile. In this study, the primary variable for these rectangular specimens is the content of transverse reinforcement to confine the boundary elements of a wall. The barbell‐shaped specimen was designed in compliance with ACI 318‐95. The response of the barbell‐shaped specimen is compared with those of other rectangular specimens. The effective aspect ratio of the specimens is set to two in this study. Based on the experimental results, it is found that the deformation capacities of walls, which are represented by displacement ductility, drift ratio and energy dissipation capacities, are affected by the boundary element details. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This paper reports the results of cyclic loading tests performed on four specimens consisting of reinforced concrete frames with brick infill walls. The brick infill is pre‐laid, followed by the cast in‐place RC columns and beams. Test parameters include the height‐to‐length ratio of the brick infill wall and the mortar compressive strength. Test results reveal that the in‐plane lateral strength of brick infill wall is related to the fracture path. The fracture path for brick infill walls with large height‐to‐length ratios includes bed joints, cross joints, and vertical splitting of bricks. As a result, the lateral strength of this type of brick infill wall is larger. In comparison, the fracture path for brick infill walls with small height‐to‐length ratios only passes through joints, which is the reason why they have lower lateral strength. Mortar with higher strength improves the lateral strength of brick infill wall. In addition to presenting experimental observations in detail, this paper compares the test results with those obtained from existing methods for assessment of seismic resistance. Comments and recommendations are offered with respect to the capabilities of the assessment methods in predicting stiffness, strength, and ultimate deformation capacity of brick infill walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
型钢混凝土剪力墙构件具有良好的抗震性能,已在高层和超高层建筑中得以广泛应用。然而我国规范中,对这种结构的轴压比计算方法及限值问题没有给出针对性的条文,在工程实践中,设计人员只能套用普通混凝土剪力墙的相关规定,限制了这种新型结构的推广。本文通过ANSYS程序分析了若干在轴向压力作用下的型钢混凝土剪力墙构件,得到了墙底截面处型钢与混凝土的应力分布情况,从而推导出型钢混凝土剪力墙构件的轴压比计算公式;另外,通过构件低周反复加载试验与计算机数值仿真技术相结合的方法,分析了型钢混凝土剪力墙构件的轴压比限值问题,并提出了设计建议。  相似文献   

17.
型钢混凝土低矮剪力墙抗震性能试验研究   总被引:4,自引:2,他引:2  
剪力墙构件是现代高层建筑结构中的主要抗侧向力构件.为了对比型钢桁架混凝土组合低矮剪力墙与型钢框架混凝土组合低矮剪力墙以及普通钢筋混凝土低矮剪力墙在地震作用下的抗震性能,本文进行了四榀1/4缩尺模型的低矮混凝土剪力墙在单调和低周反复荷载作用下的对比试验,其中单调加载试验包括一榀内置型钢桁架的型钢混凝土组合低矮剪力墙,反复加载试验包括一榀普通钢筋混凝土低矮剪力墙、一榀内置型钢框架的型钢混凝土低矮剪力墙和一榀内置型钢桁架的型钢混凝土低矮剪力墙,给出了各试件的刚度、承载力、变形、延性和破坏形态等试验结果,并对其进行分析.试验结果表明,在这三种墙体中,型钢桁架混凝土组合低矮剪力墙的承载力、变形能力、耗能能力较其他类型剪力墙好,并为型钢桁架混凝土组合低矮剪力墙在实际中的应用提供了试验依据.  相似文献   

18.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

19.
Reinforced concrete (RC) precast shear walls are extensively applied in practical engineering, owing to their fast construction speed. However, because of the transport conditions, RC precast shear walls have to be separated into small wall segments during the factory prefabrication procedure before being assembled on site. Typically, wet-type jointing methods are adopted to link the segments, which is time-consuming and results in unreliable post-pouring area strength. To overcome this problem, the novel scheme of the steel shear key (SSK) featuring steel shear panels and combined fillet and plug welding is proposed. Three RC precast shear wall specimens with different linking strength, termed as weakened SSK wall, standard SSK wall, and strengthened SSK wall, respectively, and an integrated shear wall specimen were designed. Quasi-static cyclic loading was applied to investigate the specimens' dynamic properties. The test results suggest the prefabricated wall segments equipped with SSKs showed reliable stiffness and bearing capacity and were improved in energy dissipation ability, compared with conventional shear walls. As the shear stiffness and number of equipped SSKs increased, the specimens exhibited higher strength, but their ductility and energy dissipation were slightly decreased. Most importantly, the standard SSK wall specimen could achieve satisfactory bearing capacity and deformability and is thus recommended for precast building structures. Finite element method (FEM) models were established to validate the test results, and parametric study analysis was conducted based on the coupling ratio of the SSK walls. Finally, an appropriate coupling ratio range is recommended for practical engineering applications.  相似文献   

20.
为进一步改善混凝土核心简的抗震性能,本文提出了钢管混凝土叠合柱边框内藏钢桁架组合核心筒.进行了2个1/6缩尺的核心筒模型在低周反复荷载下的抗震性能试验研究,1个为钢管混凝土叠合柱边框毛组合核心筒,1个为钢管混凝土叠合柱边框内藏钢桁架组合核心筒.通过试验,对比分析了2个核心简的承载力、延性、刚度及其衰减、滞回特性、耗能能力及破坏特征,给出了钢管混凝土叠合柱边框内藏钢桁架组合核心筒的承载力计算模型,计算结果与实测值符合较好.研究表明,钢管混凝土叠合柱边框内藏钢桁架组合核心筒与钢管混凝土叠合柱边框组合核心筒相比,其抗震性能明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号