首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ground-based UBV photometry of two fields in the northern disc of the Large Magellanic Cloud (LMC) is presented. A distance modulus of ( m − M )0=18.41±0.04 and an extinction of A V =0.30±0.05 have been calculated for these fields. The measurable star formation history of the LMC began no more than 12 Gyr ago with a strong star‐forming episode with [Fe/H]=−1.63±0.10 that accounted for approximately half (by mass) of the total star formation of the LMC in the first 3 Gyr. The data do not give accurate star formation rates during intermediate ages, but there appears to have been a recent increase in the star formation rate in these fields, beginning approximately 2.5 Gyr ago, with the current metallicity in the region being [Fe/H]=−0.38±0.10. The two fields have had very similar star formation rates until 200 Myr ago, at which point one shows a large increase.  相似文献   

2.
In this paper, we investigate the star formation and chemical evolution of damped Lyman α systems (DLAs) based on the disc galaxy formation model developed by Mo, Mao & White. We propose that the DLAs are the central galaxies of less-massive dark haloes present at redshifts z ∼3, and they should inhabit haloes of moderately low circular velocity. The empirical Schmidt law of star formation rates, and closed box model of chemical evolution that an approximation known as instantaneous recycling is assumed, are adopted. In our models, when the predicted distribution of metallicity for DLAs is calculated, two cases are considered. One is that, using the closed-box model, empirical Schmidt law and star formation time, the distribution of metallicity can be directly calculated. The other is that, when the simple gravitational instability of a thin isothermal gas disc as first discussed by Toomre is considered, the star formation occurs only in the region where the surface density of gas satisfies the critical value, not everywhere of a gas disc. In this case, we first obtain the region where the star formation can occur by assuming that the disc has a flat rotation curve and rotational velocity is equal to the circular velocity of the surrounding dark matter halo, and then calculate the metallicity distribution as in case one. We assume that star formation in each DLA lasts for a period of 1 Gyr from redshifts z =3. There is only one output parameter in our models, i.e. the stellar yield, which relates to the time of star formation history and is obtained by normalizing the predicted distribution of metallicity to the mean value of 1/13 Z as presented by Pettini et al.. The predicted metallicity distribution is consistent with the current (rather limited) observational data. A random distribution of galactic discs is taken into account.  相似文献   

3.
We have studied the evolution of isolated galaxies over several Gyr using a self-consistent N-body code including stars, gas and star formation. The results of our simulations are calibrated using spectrophotometric evolution models. We thus simultaneously analyse kinematical and photometrical evolution of the various stellar populations born during the successive bursts of star formation. Our calibrated simulations show that the properties of stellar velocity dispersion drops observed in the centre of three barred active galaxies by Emsellem et al. (2001) could depend on the observational wavelength. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We argue for implementing star formation on a viscous time-scale in hydrodynamical simulations of disc galaxy formation and evolution. Modelling two-dimensional isolated disc galaxies with the Bhatnagar–Gross–Krook (BGK) hydrocode, we verify the analytic claim of various authors that if the characteristic time-scale for star formation is equal to the viscous time-scale in discs, the resulting stellar profile is exponential on several scalelengths whatever the initial gas and dark matter profile. This casts new light on both numerical and semi-analytical disc formation simulations that either (a) commence star formation in an already exponential gaseous disc, (b) begin a disc simulation with conditions known to lead to an exponential, i.e. the collapse of a spherically symmetric nearly uniform sphere of gas in solid-body rotation under the assumption of specific angular momentum conservation, or (c) in simulations performed in a hierarchical context, tune their feedback processes to delay disc formation until the dark matter haloes are slowly evolving and without much substructure so that the gas has the chance to collapse under conditions known to give exponentials. In such models, star formation follows a Schmidt-like law, which for lack of a suitable time-scale, resorts to an efficiency parameter. With star formation prescribed on a viscous time-scale, however, we find gas and star fractions after ∼12 Gyr that are consistent with observations without having to invoke a 'fudge factor' for star formation. Our results strongly suggest that despite our gap in understanding the exact link between star formation and viscosity, the viscous time-scale is indeed the natural time-scale for star formation.  相似文献   

5.
I present the first results from a Hubble Space Telescope/NICMOS imaging study of the most metal-poor blue compact dwarf galaxy, I Zw 18. The near-infrared color-magnitude diagram (CMD) is dominated by two populations, one 10-20 Myr population of red supergiants and one 0.1-5 Gyr population of asymptotic giant branch stars. Stars older than 1 Gyr are required to explain the observed CMD at the adopted distance of 12.6 Mpc, showing that I Zw 18 is not a young galaxy. The results hold also if the distance to I Zw 18 is significantly larger. This rules out the possibility that I Zw 18 is a truly young galaxy formed recently in the local universe.  相似文献   

6.
The age of a southern globular cluster in Milky Way, NGC 1904, was shown to be larger than the typical age of the universe, around 13.7 Gyr, by some photometric studies which assumed all stars as single stars. Besides the uncertainties in photometry, isochrone and fitting technique, the neglect of binary stars possibly distorted the result. We study the effect of binary fraction on the color-magnitude diagram (CMD) of NGC 1904, via a new tool for CMD studies, \(\mathit{Powerful}\)\(\mathit{CMD}\), which can determine binary fraction, age, metallicity, distance modulus, color excess, rotating star fraction and star formation history simultaneously. We finally obtain the youngest age of \(14.1\pm2.1~\mbox{Gyr}\) with a zero-age binary fraction of 60 percent for cluster NGC 1904. The result is consistent with the age of the universe. Although our result suggests that binary fraction affects the determination of age slightly, it can improve the fitting to observed CMD, in particular blue stragglers. This suggests us to consider the effect of binaries in the studies of star clusters.  相似文献   

7.
It is well accepted that feedback from active galactic nuclei (AGNs) plays an important role in the coevolution of the supermassive black hole (SMBH) and its host galaxy,but the concrete mechanism of feedback remains unclear.A considerable body of evidence suggests that AGN feedback suppresses star formation in the host galaxy.We assemble a sample of Seyfert 2 galaxies with recent observational data of compact nuclear starbursts and estimate the gas surface density as a function of column density to illuminate the relation between feedback and AGN properties.Although there are some uncertainties,our data still imply the deviation from the star formation law (Kennicutt-Schmidt law).Further,they indicate that:(1) Feedback correlates with the Eddington ratio,rather than with the mass of SMBH,as a result of decreasing star formation efficiency.(2) The SMBH and the torus are probably undergoing coevolution.Conclusions presented here can be refined through future high resolution CO or HCN observations.  相似文献   

8.
We explore whether the rest-frame near-ultraviolet spectral region, observable in high-redshift galaxies via optical spectroscopy, contains sufficient information to allow the degeneracy between age and metallicity to be lifted. We do this by first testing the ability of evolutionary synthesis models to reclaim the correct metallicity when fitted to the near-ultraviolet spectra of F stars of known (subsolar and supersolar) metallicity. F stars are of particular interest because the rest-frame near-ultraviolet spectra of the oldest known elliptical galaxies at   z > 1  appear to be dominated by F stars near to the main-sequence turn-off.
We find that, in the case of the F stars, where the Hubble Space Telescope ultraviolet spectra have a high signal-to-noise ratio, fitting models in which the metallicity is allowed to vary as a free parameter is rather successful at deriving the correct metallicity. As a result, the estimated turn-off ages of these stars yielded by model-fitting are well constrained. Encouraged by this we have fitted these same variable-metallicity models to the deep, optical spectra of the   z ≃ 1.5 mJy  radio galaxies 53W091 and 53W069 obtained with the Keck telescope. While the age and metallicity are not so easily constrained for these galaxies, we find that even when metallicity is allowed as a free parameter, the best estimates of their ages are still ≥3 Gyr, with ages younger than 2 Gyr now strongly excluded. Furthermore, we find that a search of the entire parameter space of metallicity and star formation history using MOPED leads to the same conclusion. Our results therefore continue to argue strongly against an Einstein–de Sitter universe, and favour a Λ-dominated universe in which star formation in at least these particular elliptical galaxies was completed somewhere in the redshift range   z = 3–5  .  相似文献   

9.
Over the past several years, the Hubble Space Telescope ( HST ) has acquired many broad-band images of various regions in the M31 disc. I have obtained 27 such fields from the HST data archive in order to produce colour–magnitude diagrams (CMDs) of the stellar populations contained within these areas of the disc. I have attempted to reproduce these CMDs using theoretical stellar evolution models in conjunction with statistical tools for determining the star formation history that best fits the observations. The wide range of extinction values within any given field makes the data difficult to reproduce accurately; nevertheless, I have managed to find star formation histories that roughly reproduce the data. These statistically determined star formation histories reveal that, like the disc of the Galaxy, the disc of M31 contains very few old metal-poor stars. The histories also suggest that the star formation rate of the disc as a whole has been low over the past ∼1 Gyr.  相似文献   

10.
The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of past star formation at large radii, as traced by observations of old and intermediate-age stars, constrains the epoch at which the highest angular momentum regions of disks were in place; first results for the M31 disk suggest this occured a significant (≳ 8 Gyr) time ago. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
We reconstruct the history of the cosmic star formation as well as the cosmic production of metals in the universe by means of detailed chemical evolution models for galaxies of different morphological types. We consider a picture of coeval, non-interacting evolving galaxies where ellipticals experience intense and rapid starbursts within the first Gyr after their formation, and spirals and irregulars continue to form stars at lower rates up to the present time. We show that spirals are the main contributors to the decline of the luminosity density in all bands between z=1 and z=0. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour–magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy.
A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]∼−2.0 to [Fe/H]∼−0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for several  Gyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10  Gyr ago, when the mean metallicity was in the range −1.3≤[Fe/H]≤−0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ∼1–0.5  Gyr ago.  相似文献   

13.
A comprehensive study of the measurement of star formation histories from colour–magnitude diagrams (CMDs) is presented, with an emphasis on a variety of subtle issues involved in the generation of model CMDs and maximum likelihood solution. Among these are the need for a complete sampling of the synthetic CMD, the use of proper statistics for dealing with Poisson-distributed data (and a demonstration of why χ 2 must not be used), measuring full uncertainties in all reported parameters, quantifying the goodness-of-fit, and questions of binning the CMD and incorporating outside information. Several example star formation history measurements are given. Two examples involve synthetic data, in which the input and recovered parameters can be compared to locate possible flaws in the methodology (none were apparent) and measure the accuracy with which ages, metallicities and star formation rates can be recovered. Solutions of the histories of seven Galactic dwarf spheroidal companions (Carina, Draco, Leo I, Leo II, Sagittarius, Sculptor and Ursa Minor) illustrate the ability to measure star formation histories given a variety of conditions – numbers of stars, complexity of star formation history and amount of foreground contamination. Significant measurements of ancient >8 Gyr star formation are made in all seven galaxies. Sculptor, Draco and Ursa Minor appear entirely ancient, while the other systems show varying amounts of younger stars.  相似文献   

14.
We have constructed a family of simple models for spiral galaxy evolution to allow us to investigate observational trends in star formation history with galaxy parameters. The models are used to generate broad-band colours from which ages and metallicities are derived in the same way as the data. We generate a grid of model galaxies and select only those that lie in regions of parameter space covered by the sample. The data are consistent with the proposition that the star formation history of a region within a galaxy depends primarily on the local surface density of the gas but that one or two additional ingredients are required to explain the observational data fully. The observed age gradients appear steeper than those produced by the density dependent star formation law, indicating that the star formation law or infall history must vary with galactocentric radius. Furthermore, the metallicity–magnitude and age–magnitude correlations are not reproduced by a local density dependence alone. These correlations require one or both of the following: (i) a combination of mass dependent infall and metal enriched outflow, or (ii) a mass dependent galaxy formation epoch. Distinguishing these possibilities on the basis of current data is extremely difficult.  相似文献   

15.
We use data from the Hipparcos catalogue to construct colour–magnitude diagrams for the solar neighbourhood, which are then treated using advanced Bayesian analysis techniques to derive the star formation rate history, SFR ( t ), of this region over the last 3 Gyr. The method we use allows the recovery of the underlying SFR ( t ) without the need of assuming any a priori structure or condition on SFR ( t ), and hence yields a highly objective result. The remarkable accuracy of the data permits the reconstruction of the local SFR ( t ) with an unprecedented time resolution of ≈50 Myr. An SFR ( t ) that has an oscillatory component of period ≈0.5 Gyr is found, superimposed on a small level of constant star formation activity. Problems arising from the non-uniform selection function of the Hipparcos satellite are discussed and treated. Detailed statistical tests are then performed on the results, which confirm the inferred SFR ( t ) to be compatible with the observed distribution of stars.  相似文献   

16.
We study the star formation history of normal spirals by using a large and homogeneous data sample of local galaxies. For our analysis we utilize detailed models of chemical and spectrophotometric galactic evolution, calibrated on the Milky Way disc. We find that star formation efficiency is independent of galactic mass, while massive discs have, on average, lower gas fractions and are redder than their low-mass counterparts; put together, these findings convincingly suggest that massive spirals are older than low-mass ones. We evaluate the effective ages of the galaxies of our sample and we find that massive spirals must be several Gyr older than low-mass ones. We also show that these galaxies (having rotational velocities in the 80–400 km s−1 range) cannot have suffered extensive mass losses, i.e. they cannot have lost during their lifetime an amount of mass much larger than their current content of gas+stars.  相似文献   

17.
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.  相似文献   

18.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

19.
给出并解释了星际介质中轻元素D,3He,4He和Li的最新观测数据.星际介质中轻元素的丰度观测结果可以用来检验标准大爆炸核合成理论,因此对这些元素的丰度研究具有重要的天体物理意义.到目前为止,轻元素丰度的观测结果基本上支持开放宇宙的观点.根据最新的观测结果,在本地星际介质中D丰度可能存在小尺度不均匀性,而对类星体吸收云的观测表明不同观测者所获得的原初D丰度结果最大差别可达一个量级.如果观测是可靠的,那么在目前的标准大爆炸核合成理论和星系化学演化模型框架下还不能解释这种结果.另外种种迹象表明太阳系丰度可能不代表45亿年前本地星际介质的丰度.  相似文献   

20.
束成钢 《天文学进展》2001,19(2):249-249
从星系形成和演化的角度出发,对星系结构和动力学进行的粗略的评述,内容包括:(1)初步描述了星系中各主要成分的物理特征(空间分布,运行学和化学)及其形成和演化,(2)Damped Lyman-alpha systems(DLAs)是本地星系的化石,对其进行观测研究是HST的主要任务之一,对DLAs宽的谱线轮廓的物理机制和其恒星形成,化学演化进行了讨论,(3)目前已证明Lyman Break方法是发现高红移高恒星形成星系的有效手段,讨论了Lyman Break Galaxies的动力学过程和恒星形象,(4)旋涡星系和椭圆星系的Scaling Law是星系形成和演化所必须解释的问题,对近期该方面的研究结果作了介绍,(5)整体超星的反馈作用在星系形成和演化中起了重要作用,评述了该物理过程对星系演化的影响;(6)随着观测资料的不断积累,各种物体对河外背景辐射的贡献已成了一个重要的研究方向,讨论了宇宙整体的星形成历史和化学演化,(7)银河系是进行星系形成和演化研究的归算零点,介绍了银河系的结构,动力学及演化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号