首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
深水沉积层序特点及构成要素   总被引:6,自引:0,他引:6  
蒋恕  王华  Paul  Weimer 《地球科学》2008,33(6):825-833
本文在回顾当前国际上深水沉积研究热点的基础上,结合在墨西哥湾深水研究的成果系统描述了深水沉积的定义、形成机理、深水沉积层序及深水沉积构成要素的特点.深水沉积主要是在重力流作用下深水环境的沉积,主要形成于相对水平面下降和早期上升的时期,主要分布在低位体系域中.深水层序以凝缩段为边界,块状搬运沉积最早形成并直接位于层序界面上,其上被河道-天然堤沉积所覆盖.典型深水沉积的要素主要由河道、天然堤及越岸沉积、板状砂、块状搬运沉积等构成,这些沉积要素时空上有序地分布.深水河道是物源的主要通道和沉积的重要场所,从上游至下游河道弯曲度增加,能量逐渐减弱.侧向迁移明显,垂向上由富砂的顺直河道演化为相对富泥的弯曲河道.天然堤及越岸沉积以泥质为主,天然堤沿河道呈楔状分布,其近端砂岩含量高,地层厚且倾角较陡;远端砂岩含量低,地层薄且平缓,侧向连续性好但垂向连续性差.板状砂主要为深水扇前缘非限制性沉积,可分为块型和层型.块型侧向连续性好,同时垂向连通性高.层型侧向连续性好,垂向连通性差.块状搬运沉积主要是低水位期坡上沉积物失稳形成的各类滑塌体及碎屑流,其对下伏地层侵蚀明显,分布广泛,变形构造常见,可作为油气良好的封盖层.  相似文献   

2.
The Villanueva Complex is a lacustrine alluvial fan - fan delta system which accumulated on the northern margin of the Guadix Basin during the Pliocene. Five transitional zones can be distinguished from proximal to distal areas: proximal alluvial fan, mid-fan, fan fringe (transition zone), proximal fan delta and distal fan delta (lacustrine). This paper focuses on sedimentation in the fan fringe and the proximal fan delta areas, where the effects of fluctuations in the base level (lacustrine level) are more easily observed. The stratigraphical succession is here characterized by an alternation of fine lacustrine sediments (mudstones and siltstones) and gravels. The gravels appear as isolated channels, stacked channels, lenses and sheets. The isolated channels, which have a V-shaped profile and better developed wings towards the top, appear in the fan fringe zone and in the fan delta. The stacked channels originate in the fan fringe zone and evolve laterally and distally to isolated channels. The lenticular gravel bodies (lenses) are well represented throughout the fan delta and present small channels at the base, indicating a radial flow pattern. Finally, the sheets are characteristic of the fan fringe zone. The first episodes of channel incision occurred at lowstand lake level. The channels and lenses developed in rising lake level conditions, and sheet deposit took place at highstand lake level. Although the final form of the lithosome was heavily controlled by the fluctuations in lake level, it depended on the relative proportions of gravel and silt sedimentation. The gravel-siltstone interface therefore represents an equilibrium surface between the proportions of sedimentation of these lithologies. The bodies mentioned above are organized in coarsening and thickening upwards sequences tens of metres thick, in which a distal to proximal evolution can be observed from isolated channels to lenses or from stacked channels to sheets. The building and thickness of these sequences were controlled by fluctuations in the lake level. An initial fall in base level caused lengthening of the channels and entrenchment from distal to proximal areas, and a continuous increase in supply due to erosion in the drainage basin installed on the subaerial fan. When the lake level rose, lobes were formed at the channel endings and overbank processes were made possible, thus generating radial channels, whose levees were formed by amalgamation with the levees of the main lens channels. At the same time, sheets were formed in proximal areas, where the available amount of sediment was greater.  相似文献   

3.
《Sedimentology》2018,65(3):931-951
Submarine leveed channels are sculpted by turbidity currents that are commonly highly stratified. Both the concentration and the grain size decrease upward in the flow, and this is a fundamental factor that affects the location and grain size of deposits around a channel. This study presents laboratory experiments that link the morphological evolution of a progressively developing leveed channel to the suspended sediment structure of the turbidity currents. Previously, it was difficult to link turbidity current structure to channel–levee development because observations from natural systems were limited to the depositional products while experiments did not show realistic morphodynamics due to scaling issues related to the sediment transport. This study uses a novel experimental approach to overcome scaling issues, which results in channel inception and evolution on an initially featureless slope. Depth of the channel increased continuously as a result of levee aggradation combined with varying rates of channel floor aggradation and degradation. The resulting levees are fining upward and the grain‐size trend in the levee matches the upward decrease in grain size in the flow. It is shown that such deposit trends can result from internal channel dynamics and do not have to reflect upstream forcing. The suspended sediment structure can also be linked to the lateral transition from sediment bypass in the channel thalweg to sediment deposition on the levees. The transition occurs because the sediment concentration is below the flow capacity in the channel thalweg, while higher up on the channel walls the concentration exceeds capacity resulting in deposition of the inner levee. Thus, a framework is provided to predict the growth pattern and facies of a levee from the suspended sediment structure in a turbidity current.  相似文献   

4.
The Petit-Rhône Fan Valley (north-western Mediterranean) is a broad, sinuous, filled valley that is deeply incised by a narrow, sinuous thalweg. The valley fill is differentiated into three seismic subunits on high-resolution seismic-reflection profiles. The lower chaotic subunit probably consists of channel lag deposits that seem to be in lateral continuity with high-amplitude reflections representing levee facies. The intermediate transparent subunit, which has an erosional base and clearly truncates levee deposits, is interpreted to be mass-flow deposits resulting from the disintegration of the fan-valley flanks. The upper bedded subunit shows an overall lens-shaped geometry and the seismic reflections onlap either onto the top of the underlying transparent subunit or onto the Rhône levees. Piston core data show that the upper few meters of this upper subunit consist of thin turbidites, probably deposited by overflow processes. The few available 14C ages suggest that the upper stratified subunit filled the Petit-Rhône Fan Valley between 21 and 11 kyr BP. The upper bedded subunit is deposited within the Petit-Rhône Fan Valley downslope of a major decrease in slope gradient. This upper subunit and the thalweg are genetically related and represent a small channel/levee system confined within the fan valley. Previous studies interpreted this thalweg to be an erosional feature resulting from a recent avulsion of the major channel course. Our interpretation implies that the thalweg is not a purely erosional feature but a depositional/erosional channel. This small channel/levee system is superimposed on a large muddy channel/levee system after the sediment supply changed from thick muddy flows during the main phase of aggradation of the Rhône Fan levees, to thin, mixed (sand and mud) flows at the end of Isotope Stage 2 (~16–18 ka BP). The pre-existing morphology of the Petit-Rhône Fan Valley played a determinant role in the sediment dispersal leading to the creation of this small and confined channel/levee system. These mixed flows have undergone flow stripping resulting from the changes in the slope gradient along the thalweg course. The finer sediment overflowed from the thalweg and were deposited in the Petit-Rhône Fan Valley. Coarser channelled sediment remaining in the thalweg were deposited as a ‘sandy’lobe (Neofan). As indicated by 14C dating, sedimentation on this lobe continued until very recently, suggesting a further evolution of the turbidity flows from small mixed flows to small sandy flows. the deposition of this study lobe and the sedimentary fill of the Petit-Rhône Fan Valley may be related to widespread shelf edge and canyon wall failures with a resulting downslope evolution of failed sediment into turbidity currents.  相似文献   

5.
目前深水水道的分类方案较多,本文基于深水水道的形态学特征,且聚焦于单一型深水水道,将其划分为顺直型(曲率介于1~1.25)、低弯度S型(曲率介于1.25~1.5)和高弯度S型(曲率1.5)。其中,顺直型水道侵蚀作用最强,往往不发育天然堤沉积,无侧向加积;低弯度S型水道发育天然堤,并具有侧向加积;高弯度S型天然堤及侧向加积最为发育,决口扇常与之伴生。深水水道的曲率是水道形态的直观表现,曲率大小主要受深水地貌即深水地形坡度的影响。在上陆坡区域,地形坡度较大,沉积物能量强,深水水道以顺直型为主。中陆坡区域,随着地形坡度的减缓,水道的弯曲形态也逐渐增加,形成低弯度S型,直至下陆坡,水道演变为高弯度的S型。  相似文献   

6.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

7.
印度河扇更新世发育的沉积物波结构复杂、形态多样,其形成过程的认识程度低。本次研究通过高分辨率地震数据和地震解释技术,研究了印度河扇沉积物波的波长、形态、波峰变化等形态特征;阐述了沉积物波与沉积物变形特征的差异、识别了两者的区分标志;总结了水道堤岸斜坡和区域斜坡上沉积物波的分布规律;在此基础上,讨论了沉积物波的形成机理和控制因素,分析了沉积物波的形成过程,并建立了印度河扇沉积物波的形成模式。研究表明: (1)研究区沉积物波波长平均为486.84 m,最大1473 m;波高在10~60 m之间,平均30 m。(2)沉积物波的形态有对称型和非对称型,其迁移方式有上坡迁移型、加积型和下坡迁移型;沉积物波主要发育在水道堤岸的斜坡上,在区域斜坡上也发育少量的沉积物波,这2种沉积物波波脊的走向差异很大,水道堤岸斜坡上的沉积物波主要分布于水道凹岸堤岸的外侧,距离水道越远其规模(波长、波高)越小,波脊走向近于NE-SW方向,与水道的走向平行或斜交;区域斜坡上的沉积物波波脊的走向多为NW-SE向,平行于区域斜坡的走向,离源区越远规模越大。(3)水道堤岸斜坡上的沉积物波是由水道型浊流在离心力的作用下,溢出水道的凹岸,在堤岸外侧的斜坡上沉积形成的,堤岸斜坡的角度对沉积物波的发育规模影响不大,浊流的强度和输沙量对其规模影响大;区域斜坡上发育的沉积物波是由顺坡而下的非水道化的浊流沉积形成;滑塌变形造成的起伏地貌以及早期沉积物波的存在,也都影响了后期沉积物波的发育。  相似文献   

8.
印度河扇更新世发育的沉积物波结构复杂、形态多样,其形成过程的认识程度低。本次研究通过高分辨率地震数据和地震解释技术,研究了印度河扇沉积物波的波长、形态、波峰变化等形态特征;阐述了沉积物波与沉积物变形特征的差异、识别了两者的区分标志;总结了水道堤岸斜坡和区域斜坡上沉积物波的分布规律;在此基础上,讨论了沉积物波的形成机理和控制因素,分析了沉积物波的形成过程,并建立了印度河扇沉积物波的形成模式。研究表明: (1)研究区沉积物波波长平均为486.84 m,最大1473 m;波高在10~60 m之间,平均30 m。(2)沉积物波的形态有对称型和非对称型,其迁移方式有上坡迁移型、加积型和下坡迁移型;沉积物波主要发育在水道堤岸的斜坡上,在区域斜坡上也发育少量的沉积物波,这2种沉积物波波脊的走向差异很大,水道堤岸斜坡上的沉积物波主要分布于水道凹岸堤岸的外侧,距离水道越远其规模(波长、波高)越小,波脊走向近于NE-SW方向,与水道的走向平行或斜交;区域斜坡上的沉积物波波脊的走向多为NW-SE向,平行于区域斜坡的走向,离源区越远规模越大。(3)水道堤岸斜坡上的沉积物波是由水道型浊流在离心力的作用下,溢出水道的凹岸,在堤岸外侧的斜坡上沉积形成的,堤岸斜坡的角度对沉积物波的发育规模影响不大,浊流的强度和输沙量对其规模影响大;区域斜坡上发育的沉积物波是由顺坡而下的非水道化的浊流沉积形成;滑塌变形造成的起伏地貌以及早期沉积物波的存在,也都影响了后期沉积物波的发育。  相似文献   

9.
Levees on the lower Tuross River in south-eastern Australia reflect a complex interplay between depositional and erosional processes. Stream power, conditioned primarily by valley width, is the key determinant of levee morphology and sedimentology in this confined valley setting. Three styles of levee are described. The Rewlee levee is functionally linked to a flood channel in narrow valley settings (< 250 m). These levees contain a diverse facies assemblage characterized by various scales of erosion surfaces. Vertical accretion on levees has produced conditions under which stream power values exceed the threshold for catastrophic floodplain stripping. The levee at the Mortfield site is associated with less confined settings (valley width 500–600 m), which present lower flood stage and stream power conditions. This levee hosts a wide range of facies, but erosion surfaces are seldom observed. In the more open valley setting at the Central site (valley width 700–1000 m), levees comprise uniform, fine-grained deposits, which grade to pronounced distal floodplains with backswamps. As levees reflect a combination of within-channel and overbank processes, both depositional and erosional, these geomorphic features influence the character and sedimentology of adjacent landforms and the associated alluvial architecture of the basin.  相似文献   

10.
The low-gradient Red River is a rapidly migrating, sinuous stream with easily erodible banks. Avulsion is common at many scales, from individual meander bends that are cut off to major sections of the river that form multiple, complex meander belts. The present meander belt can be subdivided into mappable landforms—termed phases—that are associated with river courses of different ages and thus associated with archeological sites of different ages. Within the study area two phases are present. The younger Modern meander belt phase has formed within the past 0.2–0.3 ky, precluding preservation of prehistoric archaeological sites. Any protohistoric artifacts that may have been preserved in this meander belt phase would be deeply buried because as much as 2 m of the vertical accretion sediment has accumulated between artificial levees in <0.1 ky and 1–2 m of sediment has accumulated beyond the artificial levees in <0.2 ky. Archeological site preservation in this highly mobile fluvial end member can be used as a predictor for other, similar streams. A large prehistoric site is preserved on an older (0.5–1 kya) Late Prehistoric meander belt phase associated with an abandoned river course. In the study area a Fourche Maline 7 period (A.D. 800–900) through Caddo IV period (ca. A.D. 1500–1700) archeological site (3MI3/30) is preserved on this slightly higher altitude portion of the flood plain. At locations proximal to the river, the site may be buried by overbank sediment 0.4 m thick, but at more distant locations the site is at the surface or only buried by thin overbank sediment because of low sedimentation rates (0.04 cm yr−1) over the span of a millennium. Sites, such as 3MI3/30, that are occupied contemporaneous with overbank sedimentation may be stratified; however, localized erosion and removal of some archeological material may occur where channelized flow crosses the natural levee. © 1998 John Wiley & Sons, Inc.  相似文献   

11.
R. D. WINN  JR  R. H. DOTT  JR 《Sedimentology》1979,26(2):203-228
The exceptionally well exposed Lago Sofia conglomerate and sandstone lenses in the Upper Cretaceous Cerro Toro Formation of southern Chile are interpreted as the channel and channel margin facies of a deep-sea fan. The north-to-south oriented channels formed on an elongate fan in a narrow retroarc basin between a rising cordillera to the west and the South American craton to the east. The great length of some of the channels (> 120 km) seems to reflect the long duration (> 30 m.y.) and stable nature of the basin. Enclosing the lenses is the fine-grained Cerro Toro Formation which represents overbank turbidite flows and hemipelagic sedimentation on levee and levee flank areas. Foraminiferal assemblages suggest deposition in 1000-2000 m of water. Most of the conglomerate has features developed by tractive currents (parallel- and cross-stratified conglomerate). Most is moderately well sorted, imbricated, and has parallel to inclined stratification; large-scale dunes up to 4 m high are exposed. Typical sediment, gravity flow structures and bedding styles (e.g. pebbly mudstones, graded conglomerate, giant flutes) are not as common in the channel deposits as are tractive features. Tractive features in the gravels apparently were developed by rolling, sliding, and saltation as the bed-load component of highly turbulent, moderate- to low-density turbidity currents flowing in a confined channel. Graded-to-massive conglomerates appear to have been deposited rapidly from fully turbulent flows; diamictites were deposited from debris flows in which fluid viscosity, yield strength, and buoyancy of the fluid were dominant. The three major conglomerate classes recognized do not occur in a systematic manner; vertical and lateral heterogeneity is the rule.  相似文献   

12.
琼东南盆地中央峡谷深水天然堤—溢岸沉积   总被引:7,自引:0,他引:7  
中央峡谷位于琼东南盆地深水区,发育面积较广,内部天然堤—溢岸沉积发育。深水天然堤—溢岸可作为良好的油气储集体,深受油气工业界的关注。为了指导中央峡谷的油气勘探,利用三维地震资料,结合地震剖面以及均方根振幅属性对中央峡谷内部天然堤—溢岸沉积的形态和控制因素进行了分析,总结了天然堤—溢岸的沉积模式,并对其油气勘探前景进行了...  相似文献   

13.
Abstract A study of the seafloor of the Gulf of Cadiz west of the Strait of Gibraltar, using an integrated geophysical and sedimentological data set, gives new insights into sediment deposition from downslope thermohaline bottom currents. In this area, the Mediterranean Outflow (MO) begins to mix with North Atlantic waters and separates into alongslope geostrophic and downslope ageostrophic components. Changes in bedform morphology across the study area indicate a decrease in the peak velocity of the MO from >1 m s?1 to <0·5 m s?1. The associated sediment waves form a continuum from sand waves to muddy sand waves to mud waves. A series of downslope‐oriented channels, formed by the MO, are found where the MO starts to descend the continental slope at a water depth of ≈700 m. These channels are up to 40 km long, have gradients of <0·5°, a fairly constant width of ≈2 km and a depth of ≈75 m. Sand waves move down the channels that have mud wave‐covered levees similar to those seen in turbidite channel–levee systems, although the channel size and levee thickness do not decrease downslope as in typical turbidite channel systems. The channels terminate abruptly where the MO lifts off the seafloor. Gravity flow channels with lobes on the basin floor exist downslope from several of the bottom current channels. Each gravity flow system has a narrow, slightly sinuous channel, up to 20 m deep, feeding a depositional lobe up to 7 km long. Cores from the lobes recovered up to 8·5 m of massive, well‐sorted, fine sand, with occasional mud clasts. This work provides an insight into the complex facies patterns associated with strong bottom currents and highlights key differences between bottom current and gravity flow channel–levee systems. The distribution of sand within these systems is of particular interest, with applications in understanding the architecture of hydrocarbon reservoirs formed in continental slope settings.  相似文献   

14.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

15.
A miniature, 9 m-wide floodplain, developed along a gravel-washing effluent stream, shows features such as levées, crevasse splays and floodbasins which compare with their larger-scale counterparts. For sediments deposited overbank, median size decreases exponentially with distance from the channel whilst sorting increases, with coarser sediment on the outside of a meander bend. Overbank flows are only a few grain diameters in depth near the channel. This study shows potentially useful systematic relationships in floodplain sediment textures, but it involves only one of a possible variety of floodplain types dominated by overbank sedimentation. This suggests that further exploration of overbank depositional processes is desirable as an aid to field interpretation.  相似文献   

16.
ABSTRACT Mud‐rich sandstone beds in the Lower Cretaceous Britannia Formation, UK North Sea, were deposited by sediment flows transitional between debris flows and turbidity currents, termed slurry flows. Much of the mud in these flows was transported as sand‐ and silt‐sized grains that were approximately hydraulically equivalent to suspended quartz and feldspar. In the eastern Britannia Field, individual slurry beds are continuous over long distances, and abundant core makes it possible to document facies changes across the field. Most beds display regular areal grain‐size changes. In this study, fining trends, especially in the size of the largest grains, are used to estimate palaeoflow and palaeoslope directions. In the middle part of the Britannia Formation, stratigraphic zones 40 and 45, slurry flows moved from south‐west and south towards the north‐east and north. Most zone 45 beds lens out before reaching the northern edge of the field, apparently by wedging out against the northern basin slope. Zone 40 and 45 beds show downflow facies transitions from low‐mud‐content, dish‐structured and wispy‐laminated sandstone to high‐mud‐content banded units. In zone 50, at the top of the formation, flows moved from north to south or north‐west to south‐east, and their deposits show transitions from proximal mud‐rich banded and mixed slurried beds to more distal lower‐mud‐content banded and wispy‐laminated units. The contrasting facies trends in zones 40 and 45 and zone 50 may reflect differing grain‐size relationships between quartz and feldspar grains and mud particles in the depositing flows. In zones 40 and 45, quartz grains average 0·30–0·32 mm in diameter, ≈ 0·10 mm coarser than in zone 50. The medium‐grained quartz in zones 40 and 45 flows may have been slightly coarser than the associated mud grains, resulting in the preferential deposition of quartz in proximal areas and downslope enrichment of the flows in mud. In zone 50 flows, mud was probably slightly coarser than the associated fine‐grained quartz, resulting in early mud sedimentation and enrichment of the distal flows in fine‐grained quartz and feldspar. Mud particles in all flows may have had an effective grain size of ≈ 0·25 mm. Both mud content and suspended‐load fallout rate played key roles in the sedimentation of Britannia slurry flows and structuring of the resulting deposits. During deposition of zones 40 and 45, the area of the eastern Britannia Field in block 16/26 may have been a locally enclosed subbasin within which the depositing slurry flows were locally ponded. Slurry beds in the eastern Britannia Field are ‘lumpy’ sheet‐like bodies that show facies changes but little additional complexity. There is no thin‐bedded facies that might represent waning flows analogous to low‐density turbidity currents. The dominance of laminar, cohesion‐dominated shear layers during sedimentation prevented most bed erosion, and the deposystem lacked channel, levee and overbank facies that commonly make up turbidity current‐dominated systems. Britannia slurry flows, although turbulent and capable of size‐fractionating even fine‐grained sediments, left sand bodies with geometries and facies more like those deposited by poorly differentiated laminar debris flows.  相似文献   

17.
Abstract Thickness variations across‐levee and downchannel in acoustically defined depositional sequences from six submarine channel‐levee systems show consistent and quantifiable patterns. The thickness of depositional sequences perpendicular to the channel trend, i.e. across the levee, decreases exponentially, as characterized by a spatial decay constant, k. Similarly, the thickness of sediment at the levee crest decreases exponentially down the upper reaches of submarine channels and can be characterized by a second spatial decay constant, λ. The inverse of these decay constants has units of length and defines depositional length scales such that k?1 is a measure of levee width and λ?1 is a measure of levee length. Quantification of levee architecture in this way allowed investigation of relationships between levee architecture and channel dimensions. It was found that these measures of levee e‐folding width and levee e‐folding length are directly related to channel width and relief. The dimensions of channels and levees are thus intimately related, thereby limiting the range of potential channel‐levee morphologies, regardless of allocyclic forcing. A simple sediment budget model relates the product of the levee e‐folding width and e‐folding length to through‐channel volume discharge. A classification system based on the quantitative downchannel behaviour of levee architecture allows identification of a ‘mid‐channel’ reach, where sediment is passively transferred from the through‐channel flow to the levees as an overspilling flow. Downstream from this reach, the channel gradually looses its control on guiding turbidity currents, and the resulting flow can be considered as an unconfined or spreading flow.  相似文献   

18.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

19.
Natural levées of the Columbia River near Golden, British Columbia, were investigated to identify the mechanisms that control levée development and morphology. Topographic profiles of 12 levée pairs were surveyed, and measurements of water-surface elevation, flow velocity, flow direction and turbidity were obtained during an average magnitude flood (1·2 years recurrence interval). Sedimentation rates and grain-size distributions were measured from sediment traps placed along levée-to-floodbasin transects. Results show that water and sediment exchange between the channel and floodbasin was mainly by advection. During flooding, local floodbasins behave more as efficient water pathways than water storage features, resulting in down-valley floodbasin flows capable of limiting basinward growth of levées. Levée shape results primarily from two independent factors: (1) maximum channel water stage, which limits levée height; and (2) floodbasin hydraulics, which control width. In the Columbia River, the competence of floodbasin flows results in relatively narrow and steep levées. Natural levées grow under two general conditions of deposition as governed by flood-stage elevation relative to levée-crest elevation: front loading and back loading. During large floods when crests are inundated, front loading preferentially aggrades the proximal portions of levées with sediment directly from the channel, thus increasing levée slope. During average or below-average floods when many levée crests are not overtopped, back loading preferentially aggrades the distal levée areas and floodbasin floor, reducing levée slope. In the study area, a balance between front and back loading sustains these narrow and steep levée shapes for long periods, reflecting an equilibrium between hydraulic regime, floodplain morphology and deposition.  相似文献   

20.
In this paper we address the question of how to determine the period of activity (sedimentation) of fossil (Holocene) fluvial systems in vertically aggrading environments. Our data base consists of almost 100 14C ages (partly AMS) from the Rhine–Meuse delta in the central Netherlands. Radiocarbon samples from the tops of lithostratigraphically correlative organic beds underneath overbank deposits (sample type 1) yield consistent ages, indicating a synchronous onset of overbank deposition over distances of at least up to 20 km along channel belts. Similarly, 14C ages from the base of organic residual channel fills (sample type 3) generally indicate a clear termination of within-channel sedimentation. In contrast, 14C ages from the base of organic beds overlying overbank deposits (sample type 2), commonly assumed to represent the end of fluvial sedimentation, show a large scatter reaching up to 1000 14C years. This setting usually produces 14C ages significantly younger than residual channels of the same fluvial system, indicating the presence of non-depositional unconformities. These usually occur on top of slightly elevated sediment bodies (especially natural levee deposits), which often contain palaeosols. Such hiatuses appear to be much more abundant than hitherto supposed. We conclude that a combination of sample types 1 and 3 generally yields a satisfactory delimitation of the period of activity of a fossil fluvial system. The problems associated with 14C samples of type 2 may also be present in coastal areas with an alternation of tidal deposits and organic beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号