首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The Yamé river, in the Bandiagara Plateau, Dogon Country, Mali, is characterised by extensive alluvial sedimentary records, particularly in the 1 km long Ounjougou reach where Holocene floodplain pockets are inset in the Pleistocene formations. These alluvial records have been investigated via geomorphologic fieldwork and sedimentologic and micromorphologic analyses and are supported by 79 radiocarbon dates. The alluvial deposits of the valley floor correspond to a vertical accretion of 3–10 m. The reconstruction of fluvial style changes provides evidence of four main aggradation periods. From 11,500 to 8760 cal. BP, the alluvial architecture and grain-size parameters indicate a wandering river. This period included phases of pulsed high-energy floods and avulsion related to a northward shift of the summer monsoon to around 14°N after 11,500 cal. BP. From 7800 to 5300 cal. BP, a swampy floodplain environment with standing water pools within a Sudanian savanna/woodland mosaic corresponds to the culmination of the Holocene humid period. From 3800 cal. BP onwards, rhythmic sedimentation attests to an increase in the duration and/or intensity of the dry season, giving a precise date for the local termination of the Holocene Optimum period. During the last two millennia and for the first time during the Holocene, the alluvial formations are progressively restricted whereas the colluvial deposits increase, indicating strong soil erosion and redeposition within the watershed related to an increase in human impact. Four major periods are characterised by incision (I1: ante 11,500, I2: 8760–7800; I3: 6790–6500 cal. BP; I4; 2400–1700 cal. BP) pointing to dramatic changes in fluvial style. They result from high-energy flood flows during dry spells and confirm the capacity of the floodplain pocket in the upstream reach of the Sahelian belt to record rapid Holocene climatic change.  相似文献   

2.
A section cut across an alluvial fan and the underlying floodplain terrace in the central Grampian Highlands provides an unusually complete record of late Holocene events. At ca. 2.7–2.4 cal kyr BP floodplain aggradation was replaced by net floodplain incision. Pollen evidence and charcoal counts provide no evidence for contemporaneous anthropogenic landscape change, and the timing of the transition suggests that it reflects an increase in high-magnitude erosive flood events following overall climatic deterioration. The overlying fan was deposited by torrential hyperconcentrated flows during three brief storm-generated depositional events at ca. 2.2–2.1, 1.9–1.8 and 0.9–0.7 cal kyr BP, separated and succeeded by prolonged periods of stability and peat accumulation. During these three events, a cumulative total of ca. 6750 m3 of sediment was deposited, probably in no more than a few hours over a timescale of two millennia. These findings imply that proposed links between human activity and the development of alluvial fans or debris cones require reassessment, and that different elements of the Holocene alluvial landscape have responded in different ways to the same climatic inputs. Aggregation of dating evidence relating to aggradation or incision of alluvial landforms at different scales therefore may produce misleading results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
We use beaver-pond deposits and geomorphic characteristics of small streams to assess long-term effects of beavers and climate change on Holocene fluvial activity in northern Yellowstone National Park. Although beaver damming has been considered a viable mechanism for major aggradation of mountain stream valleys, this has not been previously tested with stratigraphic and geochronologic data. Thirty-nine radiocarbon ages on beaver-pond deposits fall primarily within the last 4000 yr, but gaps in dated beaver occupation from ~ 2200–1800 and 950–750 cal yr BP correspond with severe droughts that likely caused low to ephemeral discharges in smaller streams, as in modern severe drought. Maximum channel gradient for reaches with Holocene beaver-pond deposits decreases with increasing basin area, implying that stream power limits beaver damming and pond sediment preservation. In northern Yellowstone, the patchy distribution and cumulative thickness of mostly < 2 m of beaver-pond deposits indicate that net aggradation forced by beaver damming is small, but beaver-enhanced aggradation in some glacial scour depressions is greater. Although 20th-century beaver loss and dam abandonment caused significant local channel incision, most downcutting along alluvial reaches of the study streams is unrelated to beaver dam abandonment or predates historic beaver extirpation.  相似文献   

4.
This geoarcheological study investigates soil stratigraphy and geochronology of alluvial deposits to determine Holocene landscape evolution within the Hot Creek, La Jara Creek, and Alamosa River drainage basins in the San Juan Mountains of Colorado. Geomorphic mapping and radiocarbon dating indicate synchronicity in patterns of erosion, deposition, and stability between drainage basins. In all three basins, the maximum age of mapped alluvial terraces and fans is ~ 3300 cal yr BP. A depositional period seen at both Hot Creek and the Alamosa River begins ~ 3300 to 3200 cal yr BP. Based on soil development, short periods of stability followed by alluvial fan aggradation occur in the Alamosa River basin ~ 2200 cal yr BP. A period of landscape stability at Hot Creek before ~ 1100 cal yr BP is followed by a period of rapid aggradation within all three drainages between ~ 1100 and 850 cal yr BP. A final aggradation event occurred between ~ 630 and 520 cal yr BP at La Jara Creek. These patterns of landscape evolution over the past ~ 3300 yr provide the framework for an archeological model that predicts the potential for buried and surficial cultural materials in the research area.  相似文献   

5.
A 4.96-m-long sediment core from the Hanon paleo-maar in Jeju Island, Korea was studied to investigate the paleoclimatic change and East Asian monsoon variations during the latest Pleistocene to early Holocene (23,000-9000 cal yr BP). High-resolution TOC content, magnetic susceptibility, and major element composition data indicate that Jeju Island experienced the coldest climate around 18,000 cal yr BP, which corresponds to the last glacial maximum (LGM). Further, these multi-proxy data show an abrupt shift in climatic regime from cold and arid to warm and humid conditions at around 14,000 cal yr BP, which represents the commencement of the last major deglaciation. After the last major deglaciation, the TOC content decreased from 13,300 to 12,000 cal yr BP and from 11,500 to 9800 cal yr BP, thereby reflecting the weakening of the summer monsoon. The LGM in Jeju Island occurred later in comparison with the Chinese Loess Plateau. Such a disparity in climatic change events between central China and Jeju Island appears to be caused by the asynchrony between the coldest temperature event and the minimum precipitation event in central China and by the buffering effect of the Pacific Ocean.  相似文献   

6.
An accumulation terrace close to the El'gygytgyn Impact Crater in northeastern Siberia contains stratigraphic and periglacial evidence of the paleoenvironmental and paleoclimatic history and permafrost dynamics during late Quaternary time. A succession of paleo active-layer deposits that mirror environmental changes records periods favorable for the establishment and growth of ice-wedge polygonal networks and sediment variations. These two elements of the periglacial landscape serve as complementary paleoenvironmental archives that can be traced back to ∼ 14,000 cal yr BP. The slope sediments and the ground ice contained therein have prominent relative maxima and minima in properties (grain size, total organic content, oxygen isotopes). They document a regional early Holocene thermal maximum at about 9000 cal yr BP, followed by a transition to slightly cooler conditions, and a subsequent transition to slightly warmer conditions after about 4000 cal yr BP. Results from sedimentary analysis resemble morphological and geochemical (oxygen and hydrogen isotopes) results from ice wedge studies, in which successive generations of ice-wedge polygonal networks record warmer winters in late Holocene time. Moreover, peaks of light soluble cation contents and quartz-grain surface textures reveal distinct traces of cryogenic weathering. We propose a conclusive sedimentation model illustrating terrace formation in a permafrost terrain.  相似文献   

7.
Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after ∼ 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño-Southern Oscillation.  相似文献   

8.
This paper reports on a radiocarbon‐dated sequence of alluvial terraces from the Teleorman Valley in the southern Romanian Plain and represents the first Late‐glacial and well‐constrained Holocene alluvial sequence from the lower Danube Valley of southeast Europe. The two earliest and most extensive terraces (T1 and T2) are dissected by large, high‐amplitude palaeochannels, which are dated to ca. 12 800 yr BP and are comparable to large meandering palaeochannels identified from other Late glacial contexts across northern and central Europe. The remaining sequence of alluvial deposits show changes in river activity and accelerated sedimentation around 4900–4800 yr BP, 4000–3800 yr BP, 3300–2800 yr BP, 1000 yr BP and within the past 200 yr. A phase of tributary stream alluvial fan deposition is dated to ca. 2400 yr BP. All these periods of alluvial sedimentation correlate well with episodes of climatic cooling, higher rainfall and enhanced river activity, both in terms of incision and greater lateral mobility as well as increased flood frequency and magnitude identified elsewhere in central, western and northern Europe. Human activity appears to have had little effect on this river environment and significant fine‐grained sedimentation is not noted until ca. 2400 yr BP, approximately 5000 yr after the first neolithic farmers settled the area. Whether this record of river activity truly reflects the impact of prehistoric societies on this catchment will only be elucidated through further, ongoing detailed archaeological research. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

10.
The sequence of Late-glacial and Holocene alluvial sedimentation in the middle Caquetá River Basin of Colombian Amazonia is described, based on the study of the sediments and palynology of several river bank sections and on 30 radiocarbon dates. An early Late-glacial sedimentation cycle is recognised, followed by a minor late Late-glacial erosion phase. The Holocene valley fill consists of grey clays (often present in the lower part of the sections) deposited in open water and silty clays often with faint yellow mottling, deposited under a regime of seasonal flooding. The base of the Holocene sections is formed by sands, where exposed. In two places the transition of sand to open-water grey clay was dated around 10 000 yr BP and there is a suggestion that open water may have been more common at the beginning of the Holocene than later, when sedimentation by seasonal flooding became important. In many places much of the earlier Holocene sediments may have been removed by erosion and replaced by younger sediments, by a process of lateral aggradation. A considerable part of the present valley fill is younger than ca. 3500 yr. However, in several places older Holocene sediments are found, apparently only little affected by later erosion, lying below younger varzea silty clays. During the Holocene more organic sediments were formed in periods with reduced river discharge, related to drier climates in the Andes and possibly in Amazonia. These dry periods, deduced from data in the Caquetá River area, correspond well with dry phases in other parts of northwestern South America (e.g. between approximately 2700-1900 yr BP and approximately 3200-3800 yr BP). Rates of average net sedimentation, calculated from dated sections that apparently lack major hiatuses caused by erosion, were high in the lower Holocene, low during the middle Holocene and increase again in the upper Holocene. Levee deposits became coarser and the high river level of the Caquetá increased during the late Holocene. These phenomena may be explained by the increasing influence of man on the vegetation cover in the Andean headwater areas and possibly also in the Amazonian catchment area of the Caquetá River.  相似文献   

11.
Irene Zembo 《Sedimentary Geology》2010,223(3-4):206-234
The sedimentary record of the Val d'Agri basin is of great importance for understanding the Quaternary tectonic activity and climatic variability in the Southern Apennines. Changes in tectonic controls, sediment supply and climatic input have been identified. The interval from ~ 56 to ~ 43 ka was associated with asymmetric subsidence restricted to the north-eastern actively faulted margin of the basin and development of axial braided river and transverse alluvial fan systems. Short-lasting Mediterranean-type pedogenesis between ~ 43 and ~ 32 ka (MIS Stage 3) coexisted with progradation–aggradation of the southern alluvial fan deposits and southwards tilting of the basin floor. Aggradation ended with consumption of accommodation space after 32 ka. During a subsequent stage of decline of vegetation cover, possibly as a consequence of climatic cooling (probably MIS Stage 2), active progradation of alluvial fans occurred. Breakthrough of the basin threshold and entrenchment of the drainage network must therefore be attributed to a latest Pleistocene to Holocene age. The first stages of basin opening and fill, predating ~ 56 ka have only been inferred by stratigraphic considerations: the earliest lacustrine sedimentation should be middle Pleistocene or older in age. The following south-eastward basin widening allowed progradation of alluvial fan systems, which completely filled the lacustrine area (tentatively late middle Pleistocene). Pedogenesis in “Mediterranean-like” climate conditions caused the final development of a highly mature fersiallitic paleosol at the top of the fan surfaces, in areas of morpho-tectonic stability, plausibly during MIS Stage 5. The study results demonstrate the potential of applying a multidisciplinary approach in an intermontane continental settings marked by a relative rapid and constant tectonic subsidence and a high rate of sediment supply during the Pleistocene glacial–interglacial cycles.  相似文献   

12.
A Holocene lake sediment record is presented from Lake N14 situated on Angissoq Island 15 km off the main coast of southern Greenland. The palaeoclimatic development has been interpreted on the basis of flux and percentage content of biogenic silica, clastic material, organic material and sulphur as well as sedimentation rate, moss content and magnetic susceptibility. A total of 43 radiocarbon dates has ensured a reliable chronology. It is argued that varying sediment composition mainly reflects changing precipitation. By analogy with the present meteorological conditions in southern Greenland, Holocene climate development is inferred. Between 11 550 and 9300 cal. yr BP temperature and precipitation increase markedly, but this period is climatically unstable. From 9300 yr BP conditions become more stable and a Holocene climatic optimum, characterised by warm and humid conditions, is observed from 8000 to 5000 cal. yr BP. From 4700 cal. yr BP the first signs of a climatic deterioration are observed, and from 3700 cal. yr BP the climate has become more dry and cold. Superimposed on the climatic long‐term trend is climate variability on a centennial time‐scale that increases in amplitude after 3700 cal. yr BP. A climatic scenario related to the strength and position of the Greenland high‐pressure cell and the Iceland low‐pressure cell is proposed to explain the Holocene centennial climate variability. A comparison of the Lake N14 record with a terrestrial as well as a marine record from the eastern North Atlantic Ocean suggests that the centennial climate variability was uniform over large areas at certain times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The southwest Yukon Territory, Canada, is an important region for recovering sensitive records of Holocene paleoclimatic change. More information is needed, however, to constrain the timing of the major Holocene climatic transitions, and to understand associated impacts on different ecosystems. For example, paleolimnological studies have focused on small lakes and ponds, but the history of large lakes has received little study. We analyzed diatom assemblages, species richness, valve concentrations, and biogenic silica, in the sediments of Kusawa Lake (60°16.5'N; 136°10.9'W; 671 m a.s.l.) to reconstruct the responses of this large (surface area = 142 km2), deep (Zmax = 135 m) freshwater ecosystem to Holocene climatic transitions. Diatoms colonized the lake soon after ice retreat, around 11,000 cal yr BP; assemblages throughout the record were dominated by planktonic types. Diatom concentrations and biogenic silica were high during the Holocene Thermal Maximum between 10,700 and 7300 cal yr BP, then began to decrease in response to cooling associated with orbitally driven reductions in insolation. Diatom assemblages shifted towards taxa with lower surface water temperature optima after 8300 cal yr BP, perhaps in response to abrupt and progressive cooling. Our study confirms that diatom assemblages in large lakes are sensitive to regional-scale paleoclimatic changes.  相似文献   

14.
Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.  相似文献   

15.
This paper presents new evidence from the Dhamar highlands, Yemen, of paleohydrologic response to fluctuations in Holocene climate. Stratigraphic, geochemical, and chronological analyses of highland peat and lacustrine deposits contribute to knowledge of the timing of early Holocene moisture changes on the Arabian Peninsula, providing a backdrop to understanding early cultural development in the Arabian highlands. The location of the Dhamar highlands, characterized by intermontane valleys surrounded by the highest mountains on the Arabian Peninsula and adjacent to the Indian Ocean is ideal for examining the influence of the Indian Ocean Monsoon (IOM) on the moisture history of this region. Fluctuations in the lacustrine and paleosol records of the Dhamar highlands reflect both local changes in paleohydrology and regional influences on the Holocene paleoclimatic conditions in southwest Arabia. In addition, a peat deposit with a radiocarbon age of 10,253 – 10,560 cal yr BP documents some of the earliest Holocene high moisture conditions on the Arabian Peninsula.  相似文献   

16.
Clay mineral assemblages of a soil chrono-association comprising five fluvial surface members (QGH1 to QGH5) of the Indo-Gangetic Plains between the Ramganga and Rapti rivers, north-central India, demonstrate that pedogenic interstratified smectite–kaolin (Sm/K) can be considered as a potential indicator for paleoclimatic changes during the Holocene from arid to humid climates. On the basis of available radiocarbon dates, thermoluminescence dates, and historical evidence, tentative ages assigned to QGH1 to QGH5 are <500 yr B.P., >500 yr B.P., >2500 yr B.P., 8000 TL yr B.P., and 13,500 TL yr B.P., respectively. During pedogenesis two major regional climatic cycles are recorded: relatively arid climates between 10,000–6500 yr B.P. and 3800–? yr B.P. were punctuated by a warm and humid climate. Biotite weathered to trioctahedral vermiculite and smectite in the soils during arid conditions, and smectite was unstable and transformed to Sm/K during the warm and humid climatic phase (7400–4150 cal yr B.P.). When the humid climate terminated, vermiculite, smectite, and Sm/K were preserved to the present day. The study suggests that during the development of soils in the Holocene in alluvium of the Indo-Gangetic Plains, climatic fluctuations appear to be more important than realized hitherto. The soils older than 2500 yr B.P. are relict paleosols, but they are polygenetic because of their subsequent alterations.  相似文献   

17.
Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.  相似文献   

18.
Macroscopic charcoal records from a thermokarst lake deposit in central Yakutia, eastern Siberia, were used to reconstruct the history of forest fires and investigate its relationship to thermokarst initiation. High accumulation rates of charcoal and pollen were coincident in the basal deposits of the thermokarst lake, which suggests that both were initially deposited on the forest floor and subsequently reworked and accumulated in the thermokarst depression. High charcoal and pollen accumulation rates in the basal deposits, dating to 11,000-9000 cal yr BP, also indicate that the thermokarst topography developed during the early Holocene. A lower charcoal accumulation rate after ca. 9000 cal yr BP suggests that thermokarst development has been inhibited since this time. It also indicates that a surface-fire regime has been predominant at least since ca. 9000 cal yr BP in central Yakutia.  相似文献   

19.
Contemporary precipitation patterns in the Caribbean region are spatially variable, and the small number of Holocene paleoclimatic records may not adequately capture patterns of variation in the past. The hydrological history of Grenada was inferred from paleolimnological analyses of sediment cores from two crater lakes on the island. The basins were formed by volcanic activity some time during the Last Termination, but were dry between ca. 13 000 and ca. 7200 cal. a BP. After filling, the lakes were initially very shallow, and sedimentation was interrupted by a hiatus ca. 6300–5500 cal. a BP, followed by deposition of a thick tephra in both sites. After 5500 cal. a BP, lake level shows considerable multi‐centennial variability, superimposed upon a long‐term trend of generally higher lake level after 3200 cal. a BP. The pattern of lake‐level variation in Grenada shows some similarity with other Caribbean paleoclimatic records in terms of the timing of transitions, but differs from several classic studies in the sign of inferred precipitation change. The differences among records may reflect spatially variable precipitation patterns in the past in response to the position of the Intertropical Convergence Zone and to sea surface temperature influences on the trade winds and Caribbean low‐level jet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A sediment core from Lake BC01 (75°10.945′N, 111°55.181′W, 225 m asl) on south-central Melville Island, NWT, Canada, provides the first continuous postglacial environmental record for the region. Fossil pollen results indicate that the postglacial landscape was dominated by Poaceae and Salix, typical of a High Arctic plant community, whereas the Arctic herb Oxyria underwent a gradual increase during the late Holocene. Pollen-based climate reconstructions suggests the presence of a cold and dry period ~12,000 cal yr BP, possibly representing the Younger Dryas, followed by warmer and wetter conditions from 11,000 to 5000 cal yr BP, likely reflective of the Holocene Thermal Maximum. The climate then underwent a gradual cooling and drying from 5000 cal yr BP to the present, suggesting a late Holocene neoglacial cooling. Diatom preservation was poor prior to 5000 cal yr BP, when conditions were warmest, suggesting that diatom dissolution may in part be climatically controlled. Diatom concentrations were highest ~4500 cal yr BP but then decreased substantially by 3500 cal yr BP and remained low before recovering slightly in the 20th century. An abrupt warming occurred during the past 70 yr at the site, although the magnitude of this warming did not exceed that of the early Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号