首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optically Stimulated Luminescence (OSL) enables the chronology of the late Pleistocene evolution for the Val d'Agri intermontane basin of Southern Apennines to be defined in the frame of Mediterranean geodynamic and climate changes. Quartz sand from braided floodplain and alluvial fan depositional systems was analyzed using the coarse-grained, single-aliquot regenerative-dose (SAR) technique. The obtained optical ages are mostly consistent with other assessments (radiocarbon, tephrochronology) and stratigraphic constraints. OSL allows for the dating to 56–43 ka of an asymmetric subsidence stage that forced alluvial fan progradation, filling of a former lacustrine area, and development of an axial alluvial plain. A short period of Mediterranean-type pedogenesis, recorded at the top of the prograding-aggrading fans (OSL age bracket 43–32 ka), corresponds with MIS 3. During the subsequent stage of decline of vegetation cover, possibly corresponding to MIS 2, the latest progradation of alluvial fans occurred. The subsequent uplift and breakthrough of the basin threshold during the latest Pleistocene and Holocene induced entrenchment of the drainage network. The results presented here provide an example of the usefulness of OSL dating in intermontane continental settings where other geochronological constraints are scarce.  相似文献   

2.
A varied assemblage of algal stromatolites was encountered in caves along the northern section of the Dead Sea Fault Escarpment. The caves are situated at the lower part of the escarpment at altitudes ?310 to ?188 m relative to mean sea level (m.s.l.), i.e. ca 110–230 m above the present Dead Sea level. The cave stromatolites are mainly composed of aragonite yielding U–Th ages of ~75–17 ka. The altitude, mineralogy and ages, as well as comparison with previously documented stromatolite outcrops in the area, ascribe the cave stromatolites to the aragonite-precipitating hypersaline Lake Lisan—the Late Pleistocene predecessor of the Dead Sea.The stromatolites are used as a lake level gauge, based on the algae being reliant upon the light of the upper water layer. Preservation of the original structure and aragonite mineralogy of the stromatolites, suggests a closed system regarding the radioactive elements, enabling reliable U–Th dating. A curve of Lake Lisan levels is constructed based on the stromatolite ages and cave elevations. The following points are noted: (1) Lake levels of ?247 m relative to m.s.l., are recorded at ~75–72.5 ka; (2) relatively high lake levels above ?220 m relative to m.s.l., are achieved at ~41.5 ka, and are still recorded at ~17 ka; (3) the peak level is ?188 m relative to m.s.l., at ~35.5–29.5 ka. These results indicate lake stands up to 80 m higher than previously accepted, for large parts of the Lake Lisan time span. This difference is explained by tectonic subsidence of up to 2.2 m/ka within the Dead Sea depression since the latest Pleistocene. This subsidence rate is in the same order of magnitude with previously calculated subsidence rates for the Dead Sea depression [Begin, Z.B., Zilberman, E., 1997. Main Stages and Rate of the Relief Development in Israel. Geological Survey of Israel report, Jerusalem]. Unlike previous Lake Lisan level estimations, the new curve is measured at the relatively stable shoulders of the Dead Sea depression.  相似文献   

3.
Late Pleistocene paleoclimatic variability on the northeastern Qinghai–Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90–80 ka, 52–38 ka and 10–9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ∼44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.  相似文献   

4.
The present article is the first time reporting of a paleoearthquake that occurred during Late Pleistocene time along the Nalagarh Thrust (NT) in the Pinjaur Dun in northwestern sub-Himalaya. Using CORONA satellite photographs, multi-spectral IRS satellite data, and aerial photographs, a prominent active fault has been identified at Nalagarh in Pinjaur Dun. This fault in the alluvial fan is located very close to the NT which borders the topographic front of the Tertiary rocks against Quaternary deposits. A trench excavation survey was carried out at Nalagarh for detailed paleoseismic studies across this thrust fault. Displacing all the lithologic units of the fan sequence, the fault plane has an average dip of 30° due ENE and a vertical displacement of 1.6 m and slip of ~2.5 m along the fault. The lithological units, consisting of alternating sand and gravel, show back tilting and asymmetrical tight folding. Based on Optically Stimulated Luminescence (OSL) ages, the oldest litho-unit in the trench is 85.83 ± 7.2 ka and the youngest is 67.05 ± 8.4 ka. The OSL age of the sample collected from the easterly exposure of the fault shows an age of 20 ka. The faulting and associated induced deformation features suggest occurrence of a Late Pleistocene large magnitude earthquake along NT in the Nalagarh region of the Pinjaur Dun following the deposition of the Quaternary sedimentary units. The Late Pleistocene fault substantiates the seismic potential of Pinjaur Dun and calls for more exhaustive study of paleoearthquakes in this fast developing industrial belt and highly populous mountainous region.  相似文献   

5.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

6.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

7.
Sediments of a thermokarst system on the north-eastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment related to climatic changes since the early Holocene. The thermokarst pond with a length of 360 m is situated in a 14.5 × 6 km tectonically unaffected intermontane basin, which is underlain by discontinuous permafrost.A lake sediment core and bankside lacustrine onshore deposits were analysed. Additionally, fossil lake sediments were investigated, which document a former lake-level high stand. The sediments are mainly composed of marls with variable amounts of silt carbonate micrite, and organic matter.On the basis of sedimentological (grain size data), geochemical (XRF), mineralogical (XRD) and micropaleontological data (ostracods and chironomide assemblages) a reconstruction of a paleolake environment was achieved.Lacustrine sediments with endogenic carbonate precipitation suggest a lacustrine environment since at least 19.0 cal ka BP. However, because of relocation and reworking processes in the lake, the sediments did not provide distinct information about the ultimate formation of the lake. The high amount of endogenic carbonate suggests prolonged still-water conditions at about 9.3 cal ka BP. Ostracod shells and chironomid head capsules in fossil lake sediments indicate at least one former lake-level high stand, which were developed between the early and middle Holocene. From the late Holocene the area was possibly characterized by a lake-level decline, documented by a hiatus between lacustrine sediments and a reworked loess or loess-like horizon. After the lake-level decline and the following warming period, the area was affected by thermally-induced subsidence and a re-flooding of the basin because of thawing permafrost.  相似文献   

8.
Alluvial and lacustrine sediments exposed beneath late Pleistocene glaciolacustrine silt and clay at two sites along the Old Crow River, northern Yukon Territory, are rich in fossils and contain tephra beds. Surprise Creek tephra (SZt) occurs in the lower part of the alluvial sequence at CRH47 and Little Timber tephra (LTt) is present near the base of the exposure at CRH94. Surprise Creek tephra has a glass fission-track age of 0.17 ± 0.07 Ma and Little Timber tephra is 1.37 ± 0.12 Ma. All sediments at CRH47 have a normal remanent magnetic polarity and those near LTt at CRH94 have a reversed polarity — in agreement with the geomagnetic time scale. Small mammal remains from sediments near LTt support an Early Pleistocene age but the chronology is not so clear at CRH47 because of the large error associated with the SZt age determination. Tephrochronological and paleomagnetic considerations point to an MIS 7 age for the interglacial beds just below SZt at CRH47 and at Chester Bluffs in east-central Alaska, but mammalian fossils recovered from sediments close to SZt suggest a late Irvingtonian age, therefore older than MIS 7. Further studies are needed to resolve this problem.  相似文献   

9.
Curaçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from ? 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.  相似文献   

10.
Establishing firm radiocarbon chronologies for Quaternary permafrost sequences remains a challenge because of the persistence of old carbon in younger deposits. To investigate carbon dynamics and establish ice wedge formation ages in Interior Alaska, we dated a late Pleistocene ice wedge, formerly assigned to Marine Isotope Stage (MIS) 3, and host sediments near Fairbanks, Alaska, with 24 radiocarbon analyses on wood, particulate organic carbon (POC), air-bubble CO2, and dissolved organic carbon (DOC). Our new CO2 and DOC ages are up to 11,170 yr younger than ice wedge POC ages, indicating that POC is detrital in origin. We conclude an ice wedge formation age between 28 and 22 cal ka BP during cold stadial conditions of MIS 2 and solar insolation minimum, possibly associated with Heinrich event 2 or the last glacial maximum. A DOC age for an ice lens in a thaw unconformity above the ice wedge returned a maximum age of 21,470 ± 200 cal yr BP. Our variable 14C data indicate recycling of older carbon in ancient permafrost terrain, resulting in radiocarbon ages significantly older than the period of ice-wedge activity. Release of ancient carbon with climatic warming will therefore affect the global 14C budget.  相似文献   

11.
Abstract

Quaternary alluvial and colluvial sediments infill major river valleys and form alluvial fans and colluvium-filled bedrock depressions on the range fronts and within the Mount Lofty Ranges of southern Australia. A complex association of alluvial successions occurs in the Sellicks Creek drainage basin, as revealed from lithostratigraphy, physical landscape setting and optically stimulated luminescence (OSL) ages. Correlation of OSL ages with the Marine Oxygen Isotope record reveals that the alluvial successions represent multiple episodes of alluvial sedimentation since the penultimate glaciation (Marine Isotope Stage 6; MIS 6). The successions include a penultimate glacial maximum alluvium (Taringa Formation; 160?±?15?ka; MIS 6), an unnamed alluvial succession (42?±?3.2?ka; MIS 3), a late last glacial colluvial succession within bedrock depressions (ca 15?ka; MIS 2) and a late last glacial alluvium (ca 15?ka; MIS 2) in the lowest, distal portion of Sellicks Creek. In addition, the Waldeila Formation, a Holocene alluvium (3.5?±?0.3?ka; MIS 1), and sediments deposited during a phase of Post-European Settlement Aggradation (PESA) are also identified. The age and spatial distribution of the red/brown successions, mapped as the Upper Pleistocene Pooraka Formation, directly relate to different topographic and tectonic settings. Neotectonic uplift locally enhanced erosion and sedimentation, while differences in drainage basin sizes along the margin of the ranges have influenced the timing and delivery of sediment in downstream locations. Close to the Willunga Fault Scarp at Sellicks Creek, sediments resembling the Pooraka Formation have yielded a pooled mean OSL age of 83.9?±?7?ka (MIS 5a) corroborating the previously identified extended time range for deposition of the formation. Elsewhere, within major river valleys, the Pooraka Formation was deposited during the last interglacial maximum (128–118?ka; MIS 5e). In general, alluviation occurred during interglacial and interstadial pluvial events, while erosion predominated during drier glacial episodes. In both cases, contemporaneous erosion and sedimentation continued to affect the landscape. For example, in the Sellicks Creek drainage basin, which lies across an actively uplifting fault zone, late glacial age sediments (MIS 2) occur within the ranges and near the distal margin of the alluvial fan complex. OSL dating of the alluvial successions reported in this paper highlights linkages between the terrestrial and marine environments in association with sea-level (base-level) and climatic perturbations. While the alluvial successions relate largely to climatically driven changes, especially in major river valleys, tectonics, eustasy, geomorphic setting and topography have influenced erosion and sedimentation, especially on steep-sloped alluvial fan environments.
  1. KEY POINTS
  2. Luminescence dating of the Sellicks Creek alluvial fan complex reveals that sedimentation occurred predominantly during the later stages of glacial cycles accompanying lower sea-levels than present.

  3. Luminescence dating confirms that the stratigraphically lower portions of the Pooraka Formation are beyond the range of radiocarbon dating.

  4. Upper Pleistocene alluvial fan sedimentation at Sellicks Creek correlates with pluvial events in southeastern Australia.

  相似文献   

12.
Carolina bays are nearly ubiquitous along ~ 1300 km of the North American Atlantic Coastal Plain, but relatively few bays have been examined in detail, making their formation and evolution a topic of controversy. The Lake Mattamuskeet basin, eastern North Carolina, USA, is a conglomeration of multiple Carolina bays that form a > 162 km2 lake. The eastern shoreline of the lake is made up of a 2.9-km-wide plain of parabolic ridges that recorded rapid shoreface progradation. The lower shoreface deposit contains abundant charcoal beds and laminae dated 6465–6863 cal yr BP, corresponding with initiation of a lacustrine environment in the eastern part of the lake. A core from the western part of the lake sampled a 1541–1633 cal yr BP charcoal bed at the base of the lacustrine unit, indicating formation of this part of the basin postdates the eastern basin. Lake Mattamuskeet has no relationship to the Younger Dryas or a linked impact event because rim accretion significantly postdates 12,000 cal yr BP. The shoreline progradation, and association of charcoal beds with the oldest lake sediment in both main parts of the basin, suggest that fire and subsequent hydrodynamic processes were associated with initial formation of these Carolina bays.  相似文献   

13.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

14.
In the south-eastern depocentre of the Val d’Agri basin (Southern Apennines), a volcanic ash layer crops out interbedded within poorly structured alluvial fan deposits of Late Pleistocene age. Textural, depositional and pedological features of this weathered layer suggest a primary deposition from a pyroclastic fall-out of volcanic ash. Chemical analyses of feldspars show an alkali trachytic composition and accessory minerals association allow to correlate this tephra layer with the regionally dispersed Y-7 marine tephra layer (Tufo Verde Epomeo eruption, Ischia volcano), dated at 56 ± 4 ka. The Val d’Agri tephra here described for the first time was deposited during MIS Stage 3. Its recovery and characterization permit to contribute to regional correlation of the Mediterranean climatic and volcanic events from marine to continental successions and to describe landscape evolution of the Southern Apennines during glacial–interglacial cycles.  相似文献   

15.
A detailed understanding of long-term climatic and environmental change in southwestern China is hampered by a lack of long-term regional palaeorecords. Organic analysis (%TOC, %TN, C/N ratios and δ13C values) of a sediment sequence from Lake Shudu, Yunnan Province (ca. 22.6–10.5 cal ka BP) indicates generally low aquatic palaeoproductivity rates over millennial timescales in response to cold, dry climatic conditions. However, the record is punctuated by two marked phases of increased aquatic productivity from ca. 17.7 to 17.1 cal ka BP and from ca. 11.9 to 10.5 cal ka BP. We hypothesise that these shifts reflect a marked, stepwise lacustrine response to Asian summer monsoon strengthening during the last deglaciation.  相似文献   

16.
《Tectonophysics》2001,330(1-2):25-43
A detailed gravimetric study has been integrated with the most recent stratigraphic data in the area comprised between the Arno river and the foothills of the Northern Apennines, in northern Tuscany (central Italy). A Plio–Pleistocene basin lies in this area; its sedimentary succession can be subdivided from the bottom, in five allostratigraphic units: (1) Lower–Middle Pliocene shallow marine deposits; (2) Late Pliocene (?)–Early Pleistocene fluvio-lacustrine deposits; (3) late–Early Pleistocene–Middle Pleistocene alluvial to fluvial red conglomerates (Montecarlo Formation); (4) Middle Pleistocene alluvial to fluvial red conglomerates (Cerbaie and Casa Poggio ai Lecci Formations); (5) alluvial to fluvial deposits of Late Pleistocene age. The Bouguer anomaly map displays a strong minimum in the northeastern sector of the basin, and a gentle gradient from west to east. The map of the horizontal gradients permits to recognise three major fault zones, two of which along the southwestern and northeastern margins of the basin, and one along the southeastern edge of the Pisani Mountains. A 2.5D gravimetric modelling along a SW–NE section across the basin displays a thick wedge of sediments of density 2.25 g/cm3 (about 1700 m in the depocenter) overlying a layer of density 2.55 g/cm3, 1000 m thick, which rests on a basement of 2.72 g/cm3. The most of the sediment wedge is here referred to Upper Pliocene (?)–Lower Pleistocene, because borehole data show Pliocene marine deposits thinning northward close to the southern margin of the area. The layer below is referred to Ligurids and upper Tuscan Nappe units; the densest layer is interpreted as composed of Triassic evaporites, quartzites and Palaeozoic basement. According to Carmignani low-angle extensional tectonics began between Serravallian and early Messinian, thinning the Apennine nappe stack. At the end of Middle Pliocene, syn-rift deposition ceased in the Viareggio Basin (west of the investigated area) as demonstrated by Argnani and co-workers, and high-angle extensional tectonics migrated eastward up to the Monte Albano Ridge. A syn-rift continental sedimentary wedge developed in Late Pliocene–Early Pleistocene, until its hanging wall block was dismembered, during late Early Pleistocene, by NE-dipping faults, causing the uplift of its western portion (the Pisani Mountains). This breakup caused exhumation and erosion of Triassic units whose clastics where shed into the surrounding palaeo-Arno Valley in alluvial–fluvial deposits unconformably overlying the Lower Pleistocene syn-rift deposits. In the late Pleistocene SW–NE-trending fault systems created the steep southeastern edge of the Pisani Mountains and the resulting throw is recorded in Middle Pleistocene deposits across the present Arno Valley. This tectonic phase probably continues at present, offshore Livorno, as evidenced by the epicentres of earthquakes.  相似文献   

17.
Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ∼0.5 m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc–continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ∼450 ka. These uplifted terraces are gently warped in a pattern of east–west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100 m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118–128 ka). The only unaltered coral samples are found below 6 m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95 m elevation yields a U-series age of 195 ± 31 ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20 m yield U-series ages of <100 years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region.  相似文献   

18.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

19.
Cucú cave is a small cavity, 1600 m above sea level on the southern slope of Sierra de María (Almería Province, SE Spain), where current mean annual precipitation is < 450 mm. Fossils and palynomorphs contained within a sedimentary sequence, up to 9 m in depth, allow us to consider the prevailing climatic conditions, and the timing of cavern development. The lithological sequence is dominated by clast-supported detrital material with no evidence of alluvial transport. These sediments were formed by freeze-cracking during periglacial conditions, causing further cave enlargement after initial solutional development. The clastic sequence formed during cold climates is covered by a flowstone that was deposited during a period of warmer, wetter conditions. This provides a minimum U–Th isochron age of 40.2 ± 4.5 ka for the timing of periglacial action. Micromammal fossil species indicate a chronology between 140 and 80 ka. Paleoecological data based on the structure of the mammal community indicates that cold conditions prevailed at the time of deposit. In the studied sequence the presence of anthropogenic components has not been documented. The pollen assemblages identified are a common feature of Pleistocene cold stages that are in semi-arid regions.  相似文献   

20.
Plio-Pleistocene deposits of the Lower Colorado River (LCR) and tributary alluvial fans emanating from the Black Mountains near Golden Shores, Arizona record six cycles of Late Cenozoic aggradation and incision of the LCR and its adjacent alluvial fans. Cosmogenic 3He (3Hec) ages of basalt boulders on fan terraces yield age ranges of: 3.3–2.2 Ma, 2.2–1.1 Ma, 1.1 Ma to 110 ka, < 350 ka, < 150 ka, and < 63 ka. T1 and Q1 fans are especially significant, because they overlie Bullhead Alluvium, i.e. the first alluvial deposit of the LCR since its inception ca. 4.2 Ma. 3Hec data suggest that the LCR began downcutting into the Bullhead Alluvium as early as 3.3 Ma and as late as 2.2 Ma. Younger Q2a to Q4 fans very broadly correlate in number and age with alluvial terraces elsewhere in the southwestern USA. Large uncertainties in 3Hec ages preclude a temporal link between the genesis of the Black Mountain fans and specific climate transitions. Fan-terrace morphology and the absence of significant Plio-Quaternary faulting in the area, however, indicate regional, episodic increases in sediment supply, and that climate change has possibly played a role in Late Cenozoic piedmont and valley-floor aggradation in the LCR valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号