首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-surface inhomogeneities (NSIs) can lead to severe problems in the interpretation of apparent resistivity pseudosections because their effects significantly complicate the image aspect. In order to carry out a more efficient and reliable interpretation process, these problematic features should be removed from field data. We describe a filtering scheme using two-sided half-Schlumberger array data. The scheme was tested on synthetic data, generated from a simple 2D resistivity model contaminated by NSIs, and is shown to be suitable for eliminating such contaminations from apparent resistivity data. Furthermore, the original model without NSIs can be recovered satisfactorily from the inversion of filtered apparent resistivity data. The algorithm is also applied efficiently to a real data set collected at Nsimi, in southern Cameroon, along a 200-m shallow depth profile crossing a complex transitional zone. For this case, the filtering scheme provides accurate structural and behavioural interpretations of both the geometry of the major soil constituents and the groundwater partitioning.  相似文献   

2.
Consideration is given to the use of a configuration of four electrodes set in a square array for resistivity measurements. It is found that, by passing current successively between different pairs of electrodes, an apparent resistivity can be determined which is both more sensitive to the position of the array centre and less dependent on orientation than the measures usually obtained with colinear arrays of electrodes. At the same time the observations made enable the degree of the departure of local conditions from conditions of lateral homogeneity to be assessed. Theoretical and practical examples of the use of this electrode system are given and the use of the system both as a tool in mapping and in depth investigations is considered. It is shown that provided electrode spacings are suitably arranged the results of a probe carried out using the square array can be interpreted by conventional methods. The system is shown to have particular advantages in the investigation of lateral resistivity variations and the reduced dependence on orientation makes possible the recasting of interpretation data in an orientationally invariant form with a consequent drastic reduction in the number of type curves required for a particular problem.  相似文献   

3.
Matrix equations are derived to transform the resistivity sounding data obtained in one type of a four-electrode array to the corresponding resistivity sounding data that would be obtained using a different four-electrode array. These expressions are based primarily on recent work in which we have established a linear relation between the apparent resistivity and the kernel function by using a powerful exponential approximation for the kernel function. It is shown that the resistivity sounding data of two different four-electrode arrays have a linear relation through an essentially non-singular matrix operator and, as such, one is derivable from the other for a one-dimensional model and it can also be extended to two-dimensions. Some numerical examples considering synthetic data are presented which demonstrates the efficiency of the method in such transformations. Two published field examples are also considered for transformation giving a reliable interpretation.  相似文献   

4.
An account is given of the use of the square array technique in investigating the surface effects of rotational anisotropy when the axes of anisotropy are inclined to the surface. It is shown that, as with other arrays, two anisotropy parameters and n can be derived by varying the array orientation. On the basis of these considerations, the effects of such anisotropy on the values of the mean apparent resistivity and azimuthal inhomogeneity ratio normally obtained in square array measurements is reviewed. Particular attention is paid to the variation of resistivity with orientation and it is noted that, in areas of moderate anisotropy, this variation is lower for the square than for the Schlumberger array. In addition to this advantage, the azimuthal inhomogeneity ratio obtained from square array measurements may be used to indicate the severity of anisotropy in an area and two field examples of this use are given. Where anisotropy is severe, gross variations of apparent resistivity with orientation are obtained with either square or collinear arrays. In these circumstances, the use of crossed measurements is considered and the particular stability of the crossed square array demonstrated.  相似文献   

5.
Azimuthal apparent-resistivity measurements are made for the purpose of determining the strike direction of subvertical fracture sets. Data are collected about a common centre, with an electrode array expanded along a sufficient number of azimuths to define the variation of apparent resistivity with orientation. The apparent resistivities for any one electrode spacing are then plotted in a polar diagram. If the data form an ellipse, this is often interpreted as reflecting aligned, subvertical fracturing. However, it is also possible for heterogeneity within the rockmass to manifest itself, at the scale of the measurement, as a variation of apparent resistivity with azimuth. It is recommended that the offset Wenner array is used for all measurements and that a parameter is introduced, the homogeneity index, which defines whether the variations due to homogeneous anisotropy, such as subvertical fracturing, are greater than those due to inhomogeneity. This simple parameter, which is the quotient of two standard deviations, is valid for both single-peaked and multiple-peaked ellipses. A four-stage scheme for the interpretation of azimuthal data is suggested and a consistent set of quantitative measures is recommended. These will allow data, collected by different workers over different lithologies, to be compared. There are a number of geological situations which can give rise to anisotropy within the rockmass and great care is needed when interpreting azimuthal data in terms of aligned fracturing. Numerical modelling of the response to a buried channel of a rotated offset Wenner array demonstrates that elliptical data are generated by such a linear feature. Depending on the location of the array with respect to the channel, these data are either indistinguishable from those generated by aligned fracturing, or can be recognized by application of the homogeneity index. In the case where the response can be identified as being due to a channel, diagnostic information can be derived on the location and strike of the channel.  相似文献   

6.
This paper describes the procedure for interpreting the apparent resistivity data measured with the two-electrode array directly with the help of kernel function. The calculation of kernel function from the observed resistivity curve is done by the method of decomposition. In the method of decomposition the resistivity curve is approximated by a sum of certain functions, whose choice is only restricted by the requirement that the contribution to the kernel function corresponding to them should be easily computable. A few such functions are classified. These, and the standard curves for corresponding kernel functions obtained by utilising an integral expression for two-electrode array expressing the kernel explicitly in terms of the apparent resistivity functions, are plotted on log-log scale. The determination of layer parameters, that is, the layer resistivities and thicknesses from the kernel function can be carried out by a method proposed by Pekeris (1940).  相似文献   

7.
The reliability of inversion of apparent resistivity pseudosection data to determine accurately the true resistivity distribution over 2D structures has been investigated, using a common inversion scheme based on a smoothness‐constrained non‐linear least‐squares optimization, for the Wenner array. This involved calculation of synthetic apparent resistivity pseudosection data, which were then inverted and the model estimated from the inversion was compared with the original 2D model. The models examined include (i) horizontal layering, (ii) a vertical fault, (iii) a low‐resistivity fill within a high‐resistivity basement, and (iv) an upfaulted basement block beneath a conductive overburden. Over vertical structures, the resistivity models obtained from inversion are usually much sharper than the measured data. However, the inverted resistivities can be smaller than the lowest, or greater than the highest, true model resistivity. The substantial reduction generally recorded in the data misfit during the least‐squares inversion of 2D apparent resistivity data is not always accompanied by any noticeable reduction in the model misfit. Conversely, the model misfit may, for all practical purposes, remain invariant for successive iterations. It can also increase with the iteration number, especially where the resistivity contrast at the bedrock interface exceeds a factor of about 10; in such instances, the optimum model estimated from inversion is attained at a very low iteration number. The largest model misfit is encountered in the zone adjacent to a contact where there is a large change in the resistivity contrast. It is concluded that smooth inversion can provide only an approximate guide to the true geometry and true formation resistivity.  相似文献   

8.
It is proposed that the Straightforward Inversion Scheme (SIS) developed by the authors for 1D inversion of resistivity sounding and magneto-telluric sounding data can also be used in similar fashion for time-domain induced polarization sounding data. The necessary formulations based on dynamic dipole theory are presented. It is shown that by using induced polarization potential, measured at the instant when steady state current is switched off, an equation can be developed for apparent ‘chargeability–resistivity’ which is similar to the one for apparent resistivity. The two data sets of apparent resistivity and apparent chargeability–resistivity can be inverted in a combined manner, using SIS for a common uniform thickness layer earth model to estimate the respective subsurface distributions of resistivity and chargeability–resistivity. The quotient of the two profiles will give the sought after chargeability profile. A brief outline of SIS is provided for completeness. Three theoretical models are included to confirm the efficacy of SIS software by inverting only the synthetic resistivity sounding data. Then one synthetic data set based on a geological model and three field data sets (combination of resistivity and IP soundings) from diverse geological and geographical regions are included as validation of the proposal. It is hoped that the proposed scheme would complement the resistivity interpretation with special reference to shaly sand formations.  相似文献   

9.
Resistivity prospecting is the main tool used to investigate the shallow structure of the ground. A series of new techniques for determining the 2-D and 3-D geometry of the ground is now finding increasing use, but the light and simple Wenner prospecting technique remains a practical and efficient tool for rapidly mapping lateral variations in resistivity. When the resistivity changes are smooth, 1-D modelling can be used to interpret the data, and the criteria governing this approximation can be defined from synthetic data generated by a 3-D slab-model. For a Wenner array, two quadripole configurations can be used, Normal and Dipole-Dipole. For these two configurations the width of the transition zone, the apparent anisotropy effect and the precision of the resistivity values recovered from 1-D inversion differ. However the simultaneous inversion of both sets of data gives better results than for either configuration by itself. Two examples illustrate that in geological contexts where the thickness of the weathered zone causes the changes in the apparent resistivity value, this parameter can be recovered from 1-D inversion.  相似文献   

10.
The examination of apparent resistivity space sections over two-dimensional targets requires the accumulation of large amounts of data, if the resistivity field is to be adequately described. Whilst such data may be obtained from an intensive sounding traverse in the field, it is desirable for interpretation purposes to be able to generate such space sections for a range of model variations. Within their limitations, tank analogs can be used to provide such interpretation material, but the collection of data can itself be time-consuming. In this paper, an account is given of the development of an automated tank analog, where an entire space section can be scanned and the output obtained in paper tape format for later processing on a digital computer. The resistance measurement accuracy attained is comparable with normal field measurement accuracy. A practical example of the use of this analog in investigating the problem of resolving and discriminating between two horizontal cylindrical tunnels is given. This problem is basic to an understanding of the minimum size and disposition of targets which can be observed on a space section. The square array has been used in this example because of its good resolution properties in general prospecting rather than its particular suitability for the targets investigated. The directional response of the array is also illustrated and discussed.  相似文献   

11.
The magnetotelluric method employs co‐located surface measurements of electric and magnetic fields to infer the local electrical structure of the earth. The frequency dependent ‘apparent resistivity’ curves can be inaccurate at long periods if input data are contaminated – even when robust remote reference techniques are employed. Data despiking prior to processing can result in significantly more reliable estimates of long period apparent resistivities. This paper outlines a two‐step method of automatic identification and replacement for spike‐like contamination of magnetotelluric data; based on the simultaneity of natural electric and magnetic field variations at distant sites. This simultaneity is exploited both to identify windows in time when the array data are compromised as well as to generate synthetic data that replace observed transient noise spikes. In the first step windows in data time series that contain spikes are identified according to an intersite comparison of channel ‘activity’– such as the variance of differenced data within each window. In the second step, plausible data for replacement of flagged windows are calculated by Wiener filtering coincident data in clean channels. The Wiener filters – which express the time‐domain relationship between various array channels – are computed using an uncontaminated segment of array training data. Examples are shown where the algorithm is applied to artificially contaminated data and to real field data. In both cases all spikes are successfully identified. In the case of implanted artificial noise, the synthetic replacement time series are very similar to the original recording. In all cases, apparent resistivity and phase curves obtained by processing the despiked data are much improved over curves obtained from raw data.  相似文献   

12.
In order to locate relatively optimum sites for drilling exploratory holes for fresh water, an electrical resistivity survey was conducted along the new Mahukona-Kawaihae Road on the west flank of the Kohala Mountain. Two resistivity soundings made at the same stations, using the Schlumberger electrode configuration, determined an a spacing of 275 feet for horizontal profiling with the Wenner array. The correlation coefficient of the elevation to profile data was 0.41. A procedure for removing elevation effect from observed apparent resistivity was developed. Based on the reduced resistivity profile, four relatively optimum sites for additional exploration, such as by drilling, are specified. There is no specific interpretation of the data that can definitely indicate the occurrence of large underground reservoirs of fresh water anywhere along the profile. This is because the interpretation of horizontal profiling data is essentially relative and not absolute.  相似文献   

13.
钻井-地表电极联合电阻率观测装置的异常特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文利用有限单元法对多种钻井-地表电极联合电阻率观测装置在球体、直立板和水平板体等典型地质体模型上的异常响应进行正演计算,并分析其异常特征和分布规律.计算结果表明利用井中和地表电极的联合观测方式进行地下介质探测,可在兼顾地质体的水平分辨能力的同时,提高电阻率测深在垂向上分辨率.就水平分辨率而言,四极(偶极)装置对地质体的水平定位能力最强,井-地三极装置次之,地-井三极的分辨能力最差.就垂向分辨能力来说,各种观测装置的分辨率相差不大.  相似文献   

14.
On the basis of the dispersion relations of MT field, the necessity and applied prospects of the joint inversions using a pair of MT response functions which are correlative with the dispersion relations, are infered. A filter coefficient algorithm is made, with which the corresponding impedance phase data can be estimated using a set of apparent resistivities. The tests for the observed MT data show that when comparing the impedance phase estimated using the dispersion relation with the ob served phase, it can be checked whether the dispersion relation between observed apparent resistivity and phase data is satisfied or not, and that the use of the phase data corrected using the dispersion relation in the joint inversion is advantageous to obtain more confident results. It is shown that joint inversions are more advantageous than single parameter inversions, and that in the most case the joint inversion using the apparent resistivities of impedance real and imaginary parts is more advantageous than the jointinversion using the normal apparent resistivity and impedance phase. The existence of the dipersion relations between the ratio apparent resistivity and corresponding impedance phase of the orthogonal electric and magnetic field horizontal Components in the frequency EM sounding with horizontal electric dipole(FEMS) are discussed, the better effect of the joint inversion using the pair of EM response functions is obtained. The problems on the one-dimensional joint inversion for the MT and FEMS apparent resistivities, for which the observed frequency bands partly overlape each other, are studied. It is shown that this joint inversion is applicable and effective:the joint inversions of the practical data for two kinds of EM methods at two sites give the results well corresponding to the drilling data. The simulated MT inversions for the data of two kinds of EM methods are made, and more confident results also are obtained.  相似文献   

15.
On the basis of the dispersion relation of magnetotelluric response functions (MTRF), a filter coefficient algorithm has been made, with which the corresponding impedance phase data can be estimated using a set of apparent resistivity data. The tests of theoretical models and observed magnetotelluric (MT) data show that this algorithm is effective. Comparing the impedance phase estimated using dispersion relation with the observed phase, it can be checked whether the dispersion relation between the observed apparent resistivities and phase data was satisfied. The use of phase data corrected using the dispersion relation in the joint inversion for MT impedance is advantageous to obtain more reliable inversion results. The problems on the one-dimensional joint inversion for the (MT) apparent resistivity and the apparent resistivity of the frequency electromagnetic sounding (FEMS) with horizontal electric dipole, whose observed frequency bands are linked up each other, are studied. The observed data of two kinds of electromagnetic (EM) methods at two sites are used to inverse, the comparison with the drilling data show the results are more reliable. To supply the phase data of FEMS using the dispersion relation, for the apparent resistivity-phase data and impedance real part-imaginary part apparent resistivities of two kinds of EM methods the imitated MT joint inversions are made, and more similar results also are obtained. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 91–96, 1993. The projects sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

16.
This paper describes certain procedures for deriving from the apparent resistivity data as measured by the Wenner electrode configuration two functions, known as the kernel and the associated kernel respectively, both of which are functions dependent on the layer resistivities and thicknesses. It is shown that the solution of the integral equation for the Wenner electrode configuration leads directly to the associated kernel, from which an integral expression expressing the kernel explicitly in terms of the apparent resistivity function can be derived. The kernel is related to the associated kernel by a simple functional equation where K1(λ) is the kernel and B1(λ) the associated kernel. Composite numerical quadrature formulas and also integration formulas based on partial approximation of the integrand by a parabolic arc within a small interval are developed for the calculation of the kernel and the associated kernel from apparent resistivity data. Both techniques of integration require knowledge of the values of the apparent resistivity function at points lying between the input data points. It is shown that such unknown values of the apparent resistivity function can satisfactorily be obtained by interpolation using the least-squares method. The least-squares method involves the approximation of the observed set of apparent resistivity data by orthogonal polynomials generated by Forsythe's method (Forsythe 1956). Values of the kernel and of the associated kernel obtained by numerical integration compare favourably with the corresponding theoretical values of these functions.  相似文献   

17.
Airborne electromagnetic (AEM) surveys are currently being flown over populated areas and applied to detailed problems using high flight line densities. Interpretation information is supplied through a model of the subsurface resistivity distribution. Theoretical and survey data are used here to study the character and reliability of such models. Although the survey data were obtained using a fixed-wing system, the corresponding associations with helicopter, towed-bird systems are discussed. Both Fraser half-space and 1D inversion techniques are considered in relation to their ability to distinguish geological, cultural and environmental influences on the survey data. Fraser half-space modelling provides the dual interpretation parameters of apparent resistivity and apparent depth at each operational frequency. The apparent resistivity was found to be a remarkably stable parameter and appears robust to the presence of a variety of at-surface cultural features. Such features provide both incorrect altitude data and multidimensional influences. Their influences are observed most strongly in the joint estimate of apparent depth and this accounts for the stability of the apparent resistivity. Positive apparent depths, in the example data, result from underestimated altitude measurements. It is demonstrated that increasingly negative apparent depths are associated with increasing misfits between a 1D model and the data. Centroid depth calculations, which are a transform of the Fraser half-space parameters, provide an example of the detection of non-1D influences on data obtained above a populated area. 1D inversion of both theoretical and survey data is examined. The simplest use of the 1D inversion method is in providing an estimate of a half-space resistivity. This can be undertaken prior to multilayer inversion as an initial assessment. Underestimated altitude measurements also enter the problem and, in keeping with the Fraser pseudo-layer concept, an at-surface highly resistive layer of variable thickness can be usefully introduced as a constrained parameter. It is clearly difficult to ascribe levels of significance to a ‘measure’ of misfit contained in a negative apparent depth with the dimensions of metres. The reliability of 1D models is better assessed using a formal misfit parameter. With the misfit parameter in place, the example data suggest that the 1D inversion methods provide reliable apparent resistivity values with a higher resolution than the equivalent information from the Fraser half-space estimates.  相似文献   

18.
马欢  郭越  吴萍萍  谭捍东 《地球物理学报》2018,61(12):5052-5065
由于地表电阻率法受到浅地表局部异常体的干扰,反演精度受到影响,井中装置数据资料参与反演虽然可以减小浅地表局部异常体的干扰,但是由于钻井位置的局限性,数据量得不到保障,也会导致反演精度降低.为此,本文开发了一套结合地表、地-井、井-地和井-井装置数据的三维联合反演算法.首先,利用有限差分法实现正演模拟,采用非线性共轭梯度法(NLCG)恢复电阻率结构;其次,调用Message Passing Interface(MPI)函数库加速正演模拟和灵敏度矩阵运算,当开辟12个进程时,反演程序获得最大加速比4.51;最后,通过合成数据和实测数据算例证明该反演算法的有效性,也证实了多种装置组合数据体反演结果明显优于单一地表装置数据体反演结果.  相似文献   

19.
3D inversion of DC data using artificial neural networks   总被引:2,自引:0,他引:2  
In this paper, we investigate the applicability of artificial neural networks in inverting three-dimensional DC resistivity imaging data. The model used to produce synthetic data for training the artificial neural network (ANN) system was a homogeneous medium of resistivity 100 Ωm with an embedded anomalous body of resistivity 1000 Ωm. The different sizes for anomalous body were selected and their location was changed to different positions within the homogeneous model mesh elements. The 3D data set was generated using a finite element forward modeling code through standard 3D modeling software. We investigated different learning paradigms in the training process of the neural network. Resilient propagation was more efficient than any other paradigm. We studied the effect of the data type used on neural network inversion and found that the use of location and the apparent resistivity of data points as the input and corresponding true resistivity as the output of networks produces satisfactory results. We also investigated the effect of the training data pool volume on the inversion properties. We created several synthetic data sets to study the interpolation and extrapolation properties of the ANN. The range of 100–1000 Ωm was divided into six resistivity values as the background resistivity and different resistivity values were also used for the anomalous body. Results from numerous neural network tests indicate that the neural network possesses sufficient interpolation and extrapolation abilities with the selected volume of training data. The trained network was also applied on a real field dataset, collected by a pole-pole array using a square grid (8 ×8) with a 2-m electrode spacing. The inversion results demonstrate that the trained network was able to invert three-dimensional electrical resistivity imaging data. The interpreted results of neural network also agree with the known information about the investigation area.  相似文献   

20.
基于小波变换模极大值法和阈值法的CSAMT静态校正   总被引:4,自引:0,他引:4       下载免费PDF全文
采用小波分析方法进行CSAMT静态校正时,传统方法对视电阻率数据进行多尺度小波分解后,将所有尺度的细节系数设置为零,然后进行重构获得校正后的视电阻率.这使得在压制静态效应的同时,会损失一部分大构造异常的信息.针对传统小波分析方法在CSAMT静态校正中存在的问题,本文提出了基于小波变换模极大值法和阈值法相结合的静态效应校正方法.先对视电阻率数据进行多尺度小波变换,得到每一尺度上的模极大值,然后计算李氏指数进行静态效应的判断,通过设置合理的阈值,进行静态效应的压制.借助于正演模型和实测数据,验证了本方法的有效性.结果证明,本文提出的方法在压制静态效应的基础上,能够最大限度地保留大构造异常的信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号