首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

2.
Abstract

The dependence of ozone formation on the mixing ratios of volatile organic compounds (VOCs) and nitrogen oxides (NOx) has been widely studied. In addition to the atmospheric levels of VOCs and NOx, the extent of photochemical processing of VOCs has a strong impact on ozone levels. Although methods for measuring atmospheric mixing ratios of VOCs and NOx are well established and results of those measurements are widely available, determination of the extent of photochemical processing of VOCs, known as photochemical age (PCA), is difficult. In this article a recently developed methodology for the determination of PCA for individual compounds based on the change in their stable carbon isotope composition is used to investigate the dependence between ozone and VOC or NOx mixing ratios at a rural site in Ontario, Canada, during fall and winter. The results show that under these conditions the variability in VOC mixing ratios is predominantly a result of the varying impact of local emissions and not a result of changes in the extent of atmospheric processing. This explains why the mixing ratio of ozone shows no systematic dependence on the mixing ratios of VOCs or NOx in this environment and at this time of the year.  相似文献   

3.
The objectives of this study were to identify species and levels of volatile organic compounds (VOCs), and determine their oxidation capacity in the rural atmosphere of western Senegal. A field study was conducted to obtain air samples during September 14 and September 15, 2006 for analyses of VOCs. Methanol, acetone, and acetaldehyde were the most abundant detected chemical species and their maximum mixing ratios reached 6 parts per billion on a volume basis (ppbv). Local emission sources such as firewood and charcoal burning strongly influenced VOC concentrations. The VOC concentrations exhibited little temporal variations due to the low reactivity with hydroxyl radicals, with reactivity values ranging from 0.001 to 2.6 s−1. The conditions in this rural site were rather clean. Low ambient NO x levels limited ozone production. Nitrogen oxide (NO x ) levels reached values less than 2 ppbv and maximum VOC/NO x ratios reached 60 ppbvC/ppbv, with an overall average of 2.4 ± 4.5 ppbvC/ppbv. This indicates that the rural western Senegal region is NO x limited in terms of oxidant formation potential. Therefore, during the study period photochemical ozone production became limited due to low ambient NO x levels. The estimated ozone formation reactivity for VOCs was low and ranged between −5.5 mol of ozone/mol of benzaldehyde to 0.6 mol/mol of anthropogenic dienes.  相似文献   

4.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

5.
Surface ozone, NO, NO2, and NO x were measured at a coastal site (Shihua) and a nearby inland site (Zhujing) in suburban Shanghai for the whole year of 2009. More days with ozone pollution in a longer time range were observed at the coastal site than the inland site. The diurnal variations of NO x concentrations were obviously higher at Zhujing station, while those of ozone concentrations were higher at Shihua station, indicating their different air pollution conditions. Coastal wind has significant influence on the levels and characteristics of the air pollutants. The ozone concentrations during maritime winds (MW) were much higher than those during continental winds (CW) at each of the site, while the NO and NO2 concentrations were both opposite. The ozone concentrations at Shihua station were much higher than those at Zhujing station, while the NO and NO2 concentrations were both opposite. The ozone concentrations at both of the two sites showed a distinct “weekend effects” and “weekdays effects” patterns during CW and MW, respectively. Correlation analysis of the pollutants showed that, the compounds during MW were more age than those during CW, and the compounds at Shihua were more age than those at Zhujing. The air pollutions at both of the two sites are mainly associated with the pollutants emitted in this region instead of long range transport.  相似文献   

6.
7.
This study examines the general characteristics of reactive nitrogen oxides (NOy) at urban and rural sites in terms of measurement- and modeling-based analyses. In this field study, NOx at urban and rural sites were 92 and 89% of NOy on average, respectively. HONO levels (e.g., 1.8 ppbv) at the urban site were significantly higher than those at the rural site by a factor of 4.5. HONO concentrations at the urban site during the night were clearly higher than those during the day, which were likely to result from heterogeneous reactions on the surfaces of airborne aerosols and/or grounds. In contrast, there were no significant differences of PAN concentrations in either the temporal or spatial distributions. The significantly low ratios of NOz/NOy at both sampling sites indicated a more limited chemical aging process in air mass. O3 levels were weakly related to NOx oxidation at both sites, especially at the rural site.  相似文献   

8.
We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34?±?13 ppbv during 1993–96 to 30?±?15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.  相似文献   

9.
The observational results in Lin;an show the elevated average concentrations of surface ozone and Nitric Oxides(NOx)in the rural area in the eastern mid-latitudes of China.The mechanism of its variations was explained by the theoretical analysis.In the case of breeze,the photochemical reactions controlled by solar radiation is the determined factors affecting the variations of the surface O3 and NOx.A study of the correlation between NOx and SO2 demonstrates that the biomass burning is an important local emission source of NOx.  相似文献   

10.
11.
A seven-year record of surface ozone measurements from Denali NationalPark, Alaska shows a persistent spring maximum. These data, combined withmeasurements of NOx, hydrocarbons, O3, and PANfrom a continental site in Alaska during the spring of 1995 are used as thebasis for a sensitivity study to explore tropospheric photochemistry in thisregion. Because of the relatively high concentrations of NOx(mean of 116, median of 91 pptv), the net tendency was for photochemicalozone production. The range of net O3 production for averageconditions measured at this site during spring is between 0.96–3.9ppbv/day depending on the assumptions used; in any case, this productionmust contribute to the observed springtime maximum in O3.Model calculations showed that of the anthropogenic ozone precursors, onlyNOx had a strong effect on the rate of ozone production; themeasured concentrations of anthropogenic hydrocarbons did not significantlyaffect the ozone budget. Naturally produced biogenic hydrocarbons, such asisoprene, may also have a significant effect on ozone production, even atconcentrations of a few 10's of pptv. An observed temperature-isoprenerelationship from a boreal site in Canada indicates that isoprene may bepresent during the Alaskan spring. Measurements of isoprene taken duringthe spring of 1996 suggest that reactive biogenic hydrocarbon emissionsbegin before the emergence of leaves on deciduous trees and that theconcentrations were sufficient to accelerate ozone production.  相似文献   

12.
This paper shows a comparative study of particle and surface ozone concentration measurements undertaken simultaneously at two distinct semi-urban locations distant by 4 km at Saint-Denis, the main city of La Réunion island (21.5° S, 55.5° E) during austral autumn (May 2000). Black carbon (BC) particles measured at La Réunion University, the first site situated in the suburbs of Saint-Denis, show straight-forward anti-correlation with ozone, especially during pollution peaks ( 650 ng/m3 and 15 ppbv, for BC and ozone respectively) and at night-time (90 ng/m3 and 18.5 ppbv, for BC and ozone respectively). NOx (NO and NO2) and PM10 particles were also measured in parallel with ozone at Lislet Geoffroy college, a second site situated closer to the city centre. NOx and PM10 particles are anti-correlated with ozone, with noticeable ozone destruction during peak hours (mean 6 and 9 ppbv at 7 a.m. and 8 p.m. respectively) when NOx and PM10 concentrations exhibit maximum values. We observe a net daytime ozone creation (19 ppbv, O3 +4.5 ppbv), following both photochemical and dynamical processes. At night-time however, ozone recovers (mean 11 ppbv) when anthropogenic activities are lower ([BC] 100 ng/m3). BC and PM10 concentration variation obtained during an experiment at the second site shows that the main origin of particles is anthropogenic emission (vehicles), which in turn influences directly ozone variability. Saint-Denis BC and ozone concentrations are also compared to measurements obtained during early autumn (March 2000) at Sainte-Rose (third site), a quite remote oceanic location. Contrarily to Saint-Denis observations, a net daytime ozone loss (14.5 ppbv at 4 p.m.) is noticed at Sainte-Rose while ozone recovers (17 ppbv) at night-time, with however a lower amplitude than at Saint-Denis. Preliminary results presented here are handful data sets for modelling and which may contribute to a better comprehension of ozone variability in relatively polluted areas.  相似文献   

13.
The response of tropospheric ozone to a change in solar UV penetration due to perturbation on column ozone depends critically on the tropospheric NO x (NO+NO2) concentration. At high NO x or a polluted area where there is net ozone production, a decrease in column ozone will increase the solar UV penetration to the troposphere and thus increase the tropospheric ozone concentration. However, the opposite will occur, for example, at a remote oceanic area where NO x is so low that there is net ozone destruction. This finding may have important implication on the interpretation of the long term trend of tropospheric ozone. A change in column ozone will also induce change in tropospheric OH, HO2, and H2O2 concentrations which are major oxidants in the troposphere. Thus, the oxidation capacity and, in turn, the abundances of many reduced gases will be perturbed. Our model calculations show that the change in OH, HO2, and H2O2 concentrations are essentially independent of the NO x concentration.  相似文献   

14.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO x . This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO x emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO x and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO x emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations.  相似文献   

15.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO x ) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO x is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO x emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations.  相似文献   

16.
The ozone forming potential of VOCs and NOx for plumes observed from several cities and a power plant in eastern Germany was investigated. A closed box model with a gas phase photochemical reaction mechanism was employed to simulate several scenarios based upon aircraft observations. In several of the scenarios, the initial concentrations of NOx, VOCs, and SO2, were reduced to study the factors limiting the O3 production. Ozone production was limited by the initial VOC concentrations for all of the simulated plumes. Higher O3 concentrations were produced with reduced initial NOx. In one sample with high SO2 mixing ratios (>100 ppb), SO2 was also identified as a significant contributor to the production of O3.  相似文献   

17.
Study of a high SO2 event observed over an urban site in western India   总被引:1,自引:0,他引:1  
Continuous measurements of SO2, NOx and O3 along with sampling based measurements of CO, CH4, NMHCs and CO2 were carried out during May, 2010 at Ahmedabad. The diurnal variations of SO2 in ambient air exhibited elevated values during the night and lower levels during the sunlit hours. The mean concentration of SO2 during the study period was 0.95 ± 0.88 ppbv. However, the ambient SO2 exceeded 17 ppbv in the night of 20 May, 2010. On the same day, tropospheric columnar SO2 from OMI showed almost 350% increase corroborating the surface observations over an extended height regime. This was also the highest columnar value of SO2 during the summer of 2010. Columnar loadings were also found to be high for formaldehyde, precipitable water vapor and aerosol optical depth on 20 May. Elevated concentrations were also recorded for other trace gases like NO2 and O3. Analysis of related data of trace gases indicated characteristics of fresh emissions with dominant contributions from mobile sources during the study period. However, SO2/NO2 ratio of 0.36 during the event period on 20th May connotes non-local influences. Analyses of meteorological parameters suggest combined impacts of transport and inversion causing higher levels of SO2 and other pollutants during 20?C21 May. Episodes of such enhancements may perturb chemical and radiative balance of the atmosphere.  相似文献   

18.
Summary The atmospheric concentrations of several primary species: NO, NO2, NOx, CO, SO2, reactive hydrocarbons (ROG) and other 15 atmospheric and meteorological variables have been measured at several locations in Córdoba city, Argentina since June 1995. The measurements are carried out using two mobile stations to cover several important areas of Córdoba. The objective of this work is to estimate the effects of meteorology and urban structure on the air quality levels for this city using simple statistics. We analyze the correlation between primary pollutants (CO and NOx) and site locations of the air quality monitoring stations (AQMS) during the whole 1995 field campaign. In this study we take the measured data for primary pollutants and group them by location and time of the year. The results of this work may be useful to forecast air pollution episodes. Also we can get indirect information about emissions and maybe identify source characteristics. Once the influences of topography, meteorology, and land use will be fully characterized, the existing monitoring data will be used to do air quality modeling analysis and to select monitoring locations. The use of mobile stations instead of stationary ones at this stage is justified because of limited funding. Therefore, it is a valid option to decide in the future the additional instrumentation required to characterize completely the atmospheric urban area.With 5 Figures  相似文献   

19.
Measurements of the sum of peroxy radicals [HO2 + RO2],NOx (NO + NO2) and NOy (the sum of oxidisednitrogen species) made at Mace Head, on the Atlantic coast of Ireland in summer 1996 and spring 1997 are presented. Together with a suite of ancillary measurements, including the photolysis frequencies of O3 O(1D)(j(O1D)) and NO2 (j(NO2)), the measured peroxy radicals are used to calculate meandailyozone tendency (defined as the difference of the in-situphotochemical ozone production and loss rates); these values are compared with values derived from the photochemical stationary state (PSS) expression. Although the correlation between the two sets of values is good, the PSS values are found to be significantly larger than those derived from the peroxy radical measurements, on average, in line with previous published work. Possible sources of error in these calculations are discussed in detail. The data are further divided up into five wind sectors, according to the instantaneous wind direction measured at the research station. Calculation of mean ozone tendencies by wind sector shows that ozone productivity was higher during spring (April–May) 1997 than during summer (July–August) 1996across all airmasses, suggesting that tropospheric photochemistry plays an important role in the widely-reported spring ozone maximum in the Northern Hemisphere. Ozone tendencies were close to zero for the relatively unpolluted south-west, west and north-west wind sectors in the summer campaign, whereas ozone productivity was greatest in the polluted south-east sector for both campaigns. Daytime weighted average ozone tendencies were +(0.3± 0.1) ppbv h–1 for summer 1996 and +(1.0± 0.5) ppbvh–1 for spring 1997. These figures reflect the higher mixing ratios of ozone precursors in spring overall, as well as the higher proportion of polluted air masses from the south-east arriving at the site during the spring campaign. The ozone compensation point, where photochemical ozone destruction and production processes are in balance, is calculated to be ca. 14 pptv NO for both campaigns.  相似文献   

20.
Surface ozone is mainly produced by the photodissociation of nitrogen dioxide (NO2) by solar UV radiation. Subsequently, solar eclipses provide one of the unique occasions to explore the variations in the photolysis rate of NO2 and their significant impact on the production of ozone at a location. This study aims to examine the diurnal variations in the photodissociation rate coefficient of NO2, (j(NO2*)), and mixing ratios of surface ozone and NO X * (NO?+?NO2*) during the solar eclipse that occurred on 15 January 2010 at Kannur (11.9°N, 75.4°E, 5?m amsl), a tropical coastal site on the Arabian Sea in South India. This investigation was carried out on the basis of the ground level observations of surface ozone and its prominent precursor NO2*. The j(NO2*) values were estimated from the observed solar UV-A flux data. A sharp decline in j(NO2*) and surface ozone was observed during the eclipse phase because of the decreased efficiency of the ozone formation from NO2. The NO2* levels were found to increase during this episode, whereas the NO levels remained unchanged. The surface ozone concentration was reduced by 57.5%, whereas, on the other hand, that of NO X * increased by 62.5% during the solar eclipse. Subsequently a reduction of *% in the magnitude of j(NO2*) was found here during the maximum obscuration. Reductions in solar insolation, air temperature and wind speed were also observed during the solar eclipse event. The relative humidity showed a 6.4% decrease during the eclipse phase, which was a unique observation at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号