首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
We present a detailed study of the single pulses of the bright radio pulsar B0834+06, and offer evidence that the dominant periodic modulation in this pulsar's emission governs the occurrence of nulls. The nulls of B0834+06 constitute approximately 9 per cent of the total pulses and we demonstrate that they do not occur at random in the pulse sequence. On the contrary, they are found to occur preferentially close to the minimum of the pulsar's emission cycle, whose period jitters around a central value of P 3≈ 2.17 rotation periods. It is likely that the intrinsic duration of the nulls averages about 0.2 times the pulsar rotation period. Surprisingly, the clearly distinct population of nulls and partial nulls of B0834+06 exhibit a two-peak profile slightly broader than that of the normal emission. This is in contrast to the profile of extremely weak normal pulses, which is narrower than the overall profile. A flow/counterflow model for the pulsar's two components can reproduce the essential observed features of the emission in its dominant mode, with nulls occurring at the point where the minima of the two systems are aligned. This suggests that the observed nulling rate is determined by the chance positioning of our sightline with respect to the system. If the flow is interpreted as part of a circulating carousel, a fit yields a best estimate of 14 'sparks'.  相似文献   

2.
We explore the detailed polarization behaviour of pulsar 0823 + 26 using the technique of constructing partial ‘mode-separated’ profiles corresponding to the primary and secondary polarization modes. The characteristics of the two polarization modes in this pulsar are particularly interesting, both because they are anything but orthogonal and because the secondary mode exhibits a structure seen neither in the primary mode nor in the total profile. The new leading and trailing features in the secondary mode, which appear to represent a conal component pair, are interpreted geometrically on the basis of their width and the associated polarization-angle traverse as an outer cone. If the secondary-mode features are, indeed, an outer cone, then questions about the significance of the pulsar’s postcursor component become more pressing. It seems that 0823 + 26 has a very nearly equatorial geometry, in that both magnetic poles and the sightline all fall close to the rotational equator of the star. We thus associate the postcursor component with emission along those bundles of field lines which are also equatorial and which continue to have a tangent in the direction of our sight line for a significant portion of the star’s rotation cycle. It seems that in all pulsars with postcursor components, this emission follows the core component, and all may thus have equatorial emission geometries. No pulsars with precursors in this sense — including the Crab pulsar — are known. The distribution of power between the primary and secondary modes is very similar at both 430 and 1400 MHz. Our analysis shows that in this pulsar considerable depolarization must be occurring on time scales that are short compared to the time resolution of our observations, which is here some 0.5–1.0 milliseconds. One of the most interesting features of the modeseparated partial profiles is a phase offset between the primary and secondary modes. The secondary-mode ‘main pulse’ arrives some 1.5 ± 0.1‡ before the primary-mode one at 430 MHz and some 1.3 +0.1 ‡ at 21 cm. Given that the polar cap has an angular diameter of 3.36‡, we consider whether this is a geometric effect or an effect of differential propagation of the two modes in the inner magnetosphere of the pulsar.  相似文献   

3.
The correlation of subpulse phases across nulls is investigated in the radio pulsar PSR B0031−07, using 29 849 periods of high-quality data obtained with the Ooty Radio Telescope (ORT) which operates at 327 MHz. Assuming that the turn-off and turn-on subpulse phases (the phase of the subpulse in the last period before the null and that in the first period after the null, respectively) are independent random variables, the expected distribution of their difference (i.e. the total drift) is inconsistent with the observed distribution for null transitions within the same drift mode; this implies a correlation of subpulse phase across nulls. However, this correlation decreases with null duration for both the dominant drift modes. Substantial drifting occurs during short nulls (one to four periods); the drift rate during the short nulls appears to be constant for a class A transition, whereas it decreases with null duration for class B transitions. These results, together with the reported behaviour of PSR B1944+17 and PSR B0809+74, seem to imply different time-scales for phase correlation in different pulsars.  相似文献   

4.
Radio pulsar B2034\(+\)19 exhibits all three ‘canonical’ pulse-sequence phenomena—that is, pulse nulling, two distinct profile modes and subpulses with periodic modulation. Indeed, the bursts and nulls in the pulsar are short at several score pulses and quasi-periodic such that about 1/3 of the pulses are nulls. The pulsar’s two modes have very different characteristics, the first shows emission almost completely confined to the leading half of the profile and highly modulated in a 2-period odd–even manner; whereas the second mode illuminates both the leading and trailing parts of the star’s profile about equally with the appearance of drift bands at about a 3-period separation. The second mode occurs much less frequently than the first (about 15% of the time) and thus the leading part of the profile has a much larger average intensity than the trailing part. B2034\(+\)19 represents an interesting example of a pulsar with emission primarily in the leading part of its profile window with only occasional illumination in the trailing part. This suggests that there are pulsars that perhaps never emit in a part of their profile window, connecting with earlier work on pulsars with apparent ‘partial cone’ profiles.  相似文献   

5.
The role of binary progenitors of neutron stars (NSs) in the apparent distribution of space velocities and spin–velocity alignment observed in young pulsars is studied. We performed a Monte Carlo synthesis of pulsar populations originated from single and binary stars with different assumptions about the NS natal kick (kick–spin alignment, kick amplitude and kick reduction in electron-capture supernovae in binary progenitors with initial main-sequence masses from the range  8–11 M  which experienced mass exchange due to Roche lobe overflow). The calculated spin–velocity alignment in pulsars is compared with data inferred from radio polarization measurements. The observed space velocity of pulsars is found to be mostly affected by the natal kick velocity form and its amplitude; the fraction of binaries is not important here for reasonably large kicks. The natal kick–spin alignment is found to strongly affect the spin–velocity correlation of pulsars. Comparison with the observed pulsar spin–velocity angles favours a sizeable fraction of binary progenitors and kick–spin angles  ∼5°–20°  .  相似文献   

6.
We show that the proportionately spaced emission bands in the dynamic spectrum of the Crab pulsar fit the oscillations of the square of a Bessel function whose argument exceeds its order. This function has already been encountered in the analysis of the emission from a polarization current with a superluminal distribution pattern: a current whose distribution pattern rotates (with an angular frequency ω) and oscillates (with a frequency  Ω > ω  differing from an integral multiple of ω) at the same time. Using the results of our earlier analysis, we find that the dependence on frequency of the spacing and width of the observed emission bands can be quantitatively accounted for by an appropriate choice of the value of the single free parameter  Ω/ω  . In addition, the value of this parameter, thus implied by Hankins & Eilek's data, places the last peak in the amplitude of the oscillating Bessel function in question at a frequency  (∼Ω32)  that agrees with the position of the observed ultraviolet peak in the spectrum of the Crab pulsar. We also show how the suppression of the emission bands by the interference of the contributions from differing polarizations can account for the differences in the time and frequency signatures of the interpulse and the main pulse in the Crab pulsar. Finally, we put the emission bands in the context of the observed continuum spectrum of the Crab pulsar by fitting this broad-band spectrum (over 16 orders of magnitude of frequency) with that generated by an electric current with a superluminally rotating distribution pattern.  相似文献   

7.
Map making presents a significant computational challenge to the next generation of kilopixel cosmic microwave background polarization experiments. Years worth of time ordered data (TOD) from thousands of detectors will need to be compressed into maps of the T , Q and U Stokes parameters. Fundamental to the science goal of these experiments, the observation of B modes, is the ability to control noise and systematics. In this paper, we consider an alternative to the maximum likelihood method, called destriping , where the noise is modelled as a set of discrete offset functions and then subtracted from the time stream. We compare our destriping code (Descart: the DEStriping CARTographer) to a full maximum likelihood mapmaker, applying them to 200 Monte Carlo simulations of TOD from a ground-based, partial-sky polarization modulation experiment. In these simulations, the noise is dominated by either detector or atmospheric  1/ f   noise. Using prior information of the power spectrum of this noise, we produce destriped maps of T , Q and U which are negligibly different from optimal. The method does not filter the signal or bias the E- or B-mode power spectra. Depending on the length of the destriping baseline, the method delivers between five and 22 times improvement in computation time over the maximum likelihood algorithm. We find that, for the specific case of single detector maps, it is essential to destripe the atmospheric  1/ f   in order to detect B modes, even though the Q and U signals are modulated by a half-wave plate spinning at 5 Hz.  相似文献   

8.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

9.
We present Australia Telescope Compact Array (ATCA) observations of the supernova remnant (SNR) G296.8–00.3. A 1.3-GHz continuum image shows the remnant to have a complex multi-shelled appearance, with an unusual rectangular strip running through its centre. H I absorption yields a kinematic distance to the remnant of 9.6 ± 0.6 kpc, from which we estimate an age in the range (2–10) × 103 yr. The ATCA's continuum mode allows a measurement of the Faraday rotation across the band, from which we derive a mean rotation measure towards the SNR of 430 rad m−2. We consider possible explanations for the morphology of G296.8–00.3, and conclude that either it has a biannular structure, as might be produced through interaction with an asymmetric progenitor wind, or its appearance is caused by the effects of the surrounding interstellar medium.   We argue that the adjacent pulsar J1157–6224 is at a similar distance to the SNR, but that a physical association is highly unlikely. The pulsar is the only detectable source in the field in circular polarization, suggesting a method for finding pulsars during aperture synthesis.  相似文献   

10.
Most of the known pulsars are sources of highly linearly polarized radiation. Faraday rotation in the intervening medium rotates the plane of the linear polarization as the signals propagate through the medium. The Rotation Measure (RM), which quantifies the amount of such rotation as a function of wavelength, is useful in studying the properties of the medium and in recovering the intrinsic polarization characteristics of the pulsar signal. Conventional methods for polarization measurements use telescopes equipped with dual orthogonally polarized feeds that allow estimation of all 4 Stokes parameters. Some telescopes (such as the Ooty Radio Telescope) that offer high sensitivity for pulsar observations may however be receptive to only a single linear polarization. In such a case, the apparent spectral intensity modulation, resulting from differential Faraday rotation of the linearly polarized signal component within the observing bandwidth, can be exploited to estimate the RM as well as to study the linear polarization properties of the source. In this paper, we present two improved procedures by which these observables can be estimated reliably from the intensity modulation over large bandwidths, particularly at low radio frequencies. We also highlight some other applications where such measurements and procedures would be useful.  相似文献   

11.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   

12.
Pulsar nulling is not always a random process; most pulsars, in fact, null non-randomly. The Wald–Wolfowitz statistical runs test is a simple diagnostic that pulsar astronomers can use to identify pulsars that have non-random nulls. It is not clear at this point how the dichotomy in pulsar nulling randomness is related to the underlying nulling phenomenon, but its nature suggests that there are at least two distinct reasons that pulsars null.  相似文献   

13.
This paper reports new observations of pulsar B0943+10 carried out at the Pushchino Radio Astronomy Observatory (PRAO) at the low radio frequencies of 42, 62 and 112 MHz. B0943+10 is well known for its exquisitely regular burst-mode (B-mode) drifting subpulses as well as its weaker and chaotic quiescent mode. Earlier Arecibo investigations at 327 MHz have identified remarkable, continuous changes in its B-mode subpulse drift rate and integrated-profile shape with durations of several hours. These PRAO observations reveal that the changes in profile shape during the B-mode lifetime are strongly frequency dependent – namely the measured changes in the component amplitude ratio are more dramatic at 327 and 112 MHz as compared with those at 62 and 42 MHz. The differences, however, are most marked during the first several tens of minutes after B-mode onset; after an hour or so the profile shape changes tend to be more similar at all four frequencies. We also have found that the linear polarization of the integrated profile increases continuously throughout the lifetime of the B mode, going from hardly 10 per cent just after onset to some 40–50 per cent after several hours. Pulsar B0943+10's B mode thus provides a unique new opportunity to investigate continuous systematic changes in the plasma flow within the polar flux tube. While refraction in the pulsar's magnetosphere may well play some role, we find that the various frequency-dependent effects, both between and within the two modes, can largely be understood geometrically. If the modes and B-mode decay reflect systematic variations in the carousel-'spark' radius and emission height then a specific set of profile and linear polarization changes would be expected.  相似文献   

14.
Analyses of multiple pulse sequences of the pulsar PSR B2303+30 reveal two distinct emission modes. One mode (B) follows a steady even–odd pattern and is more intense. The second mode (Q) is characteristically weak, but has intermittent drift bands with a periodicity of approximately 3 P 1/cycle, and nulls much more frequently than the B mode. Both modes occur with roughly equal frequency, and their profiles have a similar single-humped form with a slight asymmetry. Our observations and analyses strongly suggest that the subpulse drift rates in both modes are linked in a series of cycles, which can be modelled as relaxing oscillations in the underlying circulation rate.  相似文献   

15.
Lorimer et al. have recently reported that the spin-down age (∼7 × 109 yr) of the low-mass binary pulsar PSR J1012+5307 is much higher than the cooling age (3 × 108 yr) of its white dwarf companion. The proposed solutions for this discrepancy are outlined and discussed. In particular, the revised cooling age estimate proposed by Alberts et al. agrees with data from other low-mass binary pulsar systems if a transition to the 'classical' cooling regime occurs between ∼0.14 and ∼0.28 M. If this transition is excluded, PSR J1012+5307 seems to have finished its accretion phase far from the spin-up line.  相似文献   

16.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

17.
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R -band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of  0.05 M  on the secondary mass. For a  1.4 M  primary, this implies that the orbital inclination is low, ≲20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ∼0.085  M  , which implies an upper limit of  ∼2.4 M  for the primary mass.  相似文献   

18.
We have analysed polarization data for a large number of isolated pulsars to investigate the evolution of pulsar radio beams. Assuming that a circular beam is directed along the axis of a dipolar magnetic field, we demonstrate that the distribution of magnetic inclination angles for the parent population of all pulsars is not flat but highly concentrated towards small inclination angles and that, consequently, the average beaming fraction is only ∼ 10 per cent. Furthermore, we find that there is a tendency for the beam axis to align with the rotational axis on a time-scale of ∼ 107 yr. This has interesting consequences for statistical studies of the pulsar population. Finally, the luminosity of pulsars is shown to be independent of the impact parameter, which indicates that pulsar beams are sharp-edged and have a relatively flat integrated intensity distribution.  相似文献   

19.
We present 132 h of new time-series photometric observations of the δ Scuti star CD−24 7599 acquired during 86 nights from 1993 to 1996 to study its frequency and amplitude variations. By using all published observations we demonstrate that the three dominating pulsation modes of the star can change their photometric amplitudes within one month at certain times, while the amplitudes can remain constant within the measurement errors at other times. CD−24 7599 also exhibits frequency variations, which do not show any correspondence between the different modes.   The typical time-scale for the amplitude variations is found to be several hundred days, which is of the same order of magnitude as the inverse linear growth rates of a selected model. We find no evidence for periodic amplitude modulation of two of the investigated modes ( f 2 and f 3), but f 1 may exhibit periodic modulation. The latter result could be spurious and requires confirmation. The observed frequency variations may either be continuous or reflect sudden frequency jumps. No evidence for cyclical period changes is obtained.   We exclude precession of the pulsation axis and oblique pulsation for the amplitude variations. Beating of closely spaced frequencies cannot explain the amplitude modulations of two of the modes, while it is possible for the third. Evolutionary effects, binarity, magnetic field changes or avoided crossings cannot be made responsible for the observed period changes. Only resonance between different modes may be able to explain the observations. However, at this stage a quantitative comparison is not possible. More observations, especially data leading to a definite mode identification and further measurements of the temporal behaviour of the amplitudes and frequencies of CD−24 7599, are required.  相似文献   

20.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号