首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The next generation of instrumentation for nuclear astrophysics will have to achieve a factor of 10–100 improvement in sensitivity over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge: combining unprecedented sensitivity with high spectral and angular resolution, and the capability of measuring the polarization of the incident photons. The feasibility of such a crystal diffraction gamma-ray lens has recently been demonstrated with the prototype lens CLAIRE. MAX is a proposed mission which will make use of satellite formation flight to achieve 86 m focal length, with the Laue lens being carried by one satellite and the detector by the other. In the current design, the Laue diffraction lens of MAX will consist of 13740 copper and germanium (Ge1−x Si x , x ∼ 0.02) crystal tiles arranged on 36 concentric rings. It simultaneously focuses in two energy bands, each centred on one of the main scientific objectives of the mission: the 800–900 keV band is dedicated to the study of nuclear gamma-ray lines from type Ia supernovae (e.g. 56 Co decay line at 847 keV) while the 450–530 keV band focuses on electron-positron annihilation (511 keV emission) from the Galactic centre region with the aim of resolving potential point sources. MAX promises a breakthrough in the study of point sources at gamma-ray energies by combining high narrow-line sensitivity (better than 10−6 cm−2 s−1) and high energy resolution (E/dE ∼ 500). The mission has successfully undergone a pre-phase A study with the French Space Agency CNES, and continues to evolve: new diffracting materials such as bent or composite crystals seem very promising. PACS: 95.55.Ka, 29.30.Kv, 61.10.-i  相似文献   

2.
How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1–2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3–6 keV) with high angular resolution (HPD = 15”) constant over the full 1.4 degree field of view, and a Wide Field Monitor (8–200 keV) with a FOV of ? of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission.  相似文献   

3.
The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.  相似文献   

4.
The “Fast X-ray Monitor” (BRM) instrument operated in the complex of the scientific instruments onboard the CORONAS-PHOTON satellite from February 19, 2009, until December 1, 2009. The instrument is intended for the registration of the hard X-ray radiation of solar flares in the 20–600 keV energy range in six differential energy channels (20–30, 30–40, 40–50, 50–70, 70–130, and 130–600 keV) with temporal resolution to 1 ms. In the instrument, a detector based on the YAP: Ce scintillator is used; this detector is 70 mm in diameter and 10 mm thick (the decay time is about 28 ns). For the decrease of the back-ground charge of the detector, the collimator limiting the angle of view of the instrument of value 12° is mounted over the scintillator. The effective area of the detector amounts to 27.7 cm2 (at the X-ray radiation energy 80 keV), and the dead time of the detector is 1 μs. Over the operation onboard the CORONAS-PHOTON satellite, the BRM instrument has registered gamma ray burst series and, perhaps, one solar flare of the class C1.3 on October 26, 2009.  相似文献   

5.
The gamma-ray imager (GRI) is a novel mission concept that will provide an unprecedented sensitivity leap in the soft gamma-ray domain by using for the first time a focusing lens built of Laue diffracting crystals. The lens will cover an energy band from 200–1,300 keV with an effective area reaching 600 cm2. It will be complemented by a single reflection multilayer coated mirror, extending the GRI energy band into the hard X-ray regime, down to ∼10 keV. The concentrated photons will be collected by a position sensitive pixelised CZT stack detector. We estimate continuum sensitivities of better than 10 − 7 ph cm − 2s − 1keV − 1 for a 100 ks exposure; the narrow line sensitivity will be better than 3 × 10 − 6 ph cm − 2s − 1 for the same integration time. As focusing instrument, GRI will have an angular resolution of better than 30 arcsec within a field of view of roughly 5 arcmin—an unprecedented achievement in the gamma-ray domain. Owing to the large focal length of 100 m of the lens and the mirror, the optics and detector will be placed on two separate spacecrafts flying in formation in a high elliptical orbit. R&D work to enable the lens focusing technology and to develop the required focal plane detector is currently underway, financed by ASI, CNES, ESA, and the Spanish Ministery of Education and Science. The GRI mission has been proposed as class M mission for ESAs Cosmic Vision 2015–2025 program. GRI will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the universe. All authors are on behalf of a large international collaboration The GRI mission has been proposed as an international collaboration between (in alphabetical order) Belgium (CSR), China (IHEP, Tsinghua Univ.), Denmark (DNSC, Southern Univ.), France (CESR, APC, ILL, CSNSM, IAP, LAM), Germany (MPE), Ireland (UCD School of Physics), Italy (INAF/IASF Rome, Bologna, Milano, Palermo; INAF/OA Brera, Roma; UNIFE, CNR/IMEM), Poland (NCAC), Portugal (Combra Univ., Evora Univ.), Russia (SINP, MSU, Ioffe Inst.), Spain (IEEC-CSIC-IFAE, CNM-IMB), the Netherlands (SRON, Utrecht Univ.), Turkey (Sabanci Univ.), United Kingdom (Univ. of Southampton, MSSL, RAL, Edinburgh Univ.), and the United States of America (SSL UC Berkeley, Argonne National Lab., MSFC, GSFC, US NRL).  相似文献   

6.
The polarisation of astrophysical source emission in the energy range from a few tens of keV up to the MeV region is an almost unexplored field of high-energy astrophysics. Till date, polarimetry in astrophysics–in the energy domain from hard X-rays up to soft γ-rays–has not been pursued due to the difficulties involved in obtaining sufficient sensitivity. Indeed for those few instruments that are capable of performing this type of measurement (e.g. the COMPTEL instrument on the Compton Gamma-ray Observatory and the IBIS instrument on INTEGRAL), polarimetry itself plays a secondary role in the mission objectives, as the efficiencies (0.5% and 10% maximum, respectively) and polarimetric Q factors (0.1 and 0.3, respectively) are relatively limited. In order to perform efficient polarimetric measurements for hard X-ray and soft gamma-ray sources, with an instrument of relatively robust and simple design, a CdTe based telescope (CIPHER: Coded Imager and Polarimeter for High Energy Radiation) is under study. This instrument is based on a thick (10 mm) CdTe position-sensitive spectrometer comprising four modules of 32 × 32 individual pixels, each with a surface area of 2 × 2 mm2 (about 160 cm2 total detection area). The polarimetric performance and design optimisation of the CIPHER detection surface have been studied by use of a Monte Carlo code. This detector, due to its intrinsic geometry, can allow efficient polarimetric measurements to be made between 100 keV and 1 MeV. In order to predict the polarimetric performance and to optimise the design and concept of the CIPHER detection plane, a Monte Carlo code based on GEANT4 library modules was developed to simulate the detector behaviour under a polarised photon flux. The Compton double event efficiency, as well bi-dimensional double event distribution maps and the corresponding polarimetric modulation factor will be presented and discussed. Modulation Q factors better than 0.50 and double event total efficiencies greater than 10% were calculated in the energy range between 100 keV and 1 MeV. Herein we will present and discuss the general problems that affect polarimetric measurements in space, such as the inclination of the source with respect to the telescope optical axis and background radiation. Q factor calculations for several beam inclinations as well as for background together with simulated astronomical sources will be presented and discussed.  相似文献   

7.
We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1?C200?keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1?C200?keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk?Cthermal emission?Ciron line?Ccomptonisation?Creflection?Cnon-thermal emission?Cjets. Neutron stars?Cmagnetic field?Ccyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines?Cdirect measurement of magnetic filed?Cequation of state constraints?Cshort bursts?Cgiant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN??s. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20?keV). Element formation?CSupernovae: The energy resolution achievable for this mission (<0.5?keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78?keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40?C50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1?C200?keV energy range with a single detector, a double-sided Germanium strip detector operating at 80?K. The main features will be: (a) good energy resolution (.150?keV at 5?keV and <.5?keV at 100?keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.  相似文献   

8.
X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e.g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 % polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics.  相似文献   

9.
The Large Observatory For X-ray Timing (LOFT) is one of the candidate missions selected by the European Space Agency for an initial assessment phase in the Cosmic Vision programme. It is proposed for the M3 launch slot and has broad scientific goals related to fast timing of astrophysical X-ray sources. LOFT will carry the Large Area Detector (LAD), as one of the two core science instruments, necessary to achieve the challenging objectives of the project. LAD is a collimated detector working in the energy range 2-50 keV with an effective area of approximately 10 m 2at 8 keV. The instrument comprises an array of modules located on deployable panels. Lead-glass microchannel plate (MCP) collimators are located in front of the large-area Silicon Drift Detectors (SDD) to reduce the background contamination from off-axis resolved point sources and from the diffuse X-ray background. The inner walls of the microchannel plate pores reflect grazing incidence X-ray photons with a probability that depends on energy. In this paper, we present a study performed with an ad-hoc simulator of the effects of this capillary reflectivity on the overall instrument performance. The reflectivity is derived from a limited set of laboratory measurements, used to constrain the model. The measurements were taken using a prototype collimator whose thickness is similar to that adopted in the current baseline design proposed for the LAD. We find that the experimentally measured level of reflectivity of the pore inner walls enhances the off-axis transmission at low energies, producing an almost flat-top response. The resulting background increase due to the diffuse cosmic X-ray emission and sources within the field of view does not degrade the instrument sensitivity.  相似文献   

10.
InFOCμS is a new generation balloon-borne hard X-ray telescope with focusing optics and spectroscopy. We had a successful 22.5-hour flight from Fort Sumner, NM on September 16,17, 2004. In this paper, we present the performance of the hard X-ray telescope, which consists of a depth-graded platinum/carbon multilayer mirror and a CdZnTe detector. The telescope has an effective area of 49 cm2 at 30 keV, an angular resolution of 2.4 arcmin (HPD), and a field of view of 11 arcmin (FWHM) depending on energies. The CdZnTe detector is configured with a 12 × 12 segmented array of detector pixels. The pixels are 2 mm square, and are placed on 2.1 mm centers. An averaged energy resolution is 4.4 keV at 60 keV and its standard deviation is 0.36 keV over 128 pixels. The detector is surrounded by a 3-cm thick CsI anti coincidence shield to reduce background from particles and photons not incident along the mirror focal direction. The inflight background is 2.9 × 10−4 cts cm−2 sec−1 keV−1 in the 20–50 keV band.  相似文献   

11.
On 1 June 2005, the prototype Nuclear Compton Telescope (NCT) flew on a high altitude balloon from Fort Sumner, New Mexico. NCT is a balloon-borne soft γ-ray (0.2–10 MeV) telescope for studying astrophysical sources of nuclear line emission and γ-ray polarization. Our program is designed to develop and test technologies and analysis techniques crucial for the Advanced Compton Telescope; however, our detector design and configuration is also well matched to the focal plane requirements for focusing Laue lenses. The NCT prototype utilizes two, 3D imaging germanium detectors (GeDs) in a novel, ultra-compact design optimized for nuclear line emission in the 0.5–2 MeV range. Our prototype flight provides a critical test of the novel detector technologies, analysis techniques, and background rejection procedures developed for high resolution Compton telescopes.  相似文献   

12.
McConnell  Mark L.  Ryan  James M.  Smith  David M.  Lin  Robert P.  Emslie  A. Gordon 《Solar physics》2002,210(1-2):125-142
Although designed primarily as a hard X-ray imager and spectrometer, the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) is also capable of measuring the polarization of hard X-rays (20–100 keV) from solar flares. This capability arises from the inclusion of a small unobstructed Be scattering element that is strategically located within the cryostat that houses the array of nine germanium detectors. The Ge detectors are segmented, with both a front and rear active volume. Low-energy photons (below about 100 keV) can reach a rear segment of a Ge detector only indirectly, by scattering. Low-energy photons from the Sun have a direct path to the Be and have a high probability of Compton scattering into a rear segment of a Ge detector. The azimuthal distribution of these scattered photons carries with it a signature of the linear polarization of the incident flux. Sensitivity estimates, based on Monte Carlo simulations and in-flight background measurements, indicate that a 20–100 keV polarization sensitivity of less than a few percent can be achieved for X-class flares.  相似文献   

13.
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10?keV has increased dramatically (??8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10?keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will perform groundbreaking science in key scientific areas, including: black hole cosmic evolution, census and accretion physics; acceleration mechanism and non-thermal emission; physics of matter under extreme conditions. NHXM is designed specifically to address these topics via: broad 0.5?C80 (120) keV band for imaging and spectroscopy; 20?arcsec (15 goal) Half Energy Width (HEW) angular resolution at 30?keV; sensitivity limits more than 3 orders of magnitude better than those available in present day instruments; broadband (2?C35?keV) imaging polarimetry. In addition, NHXM has the ability to locate and actively monitor sources in different states of activity and to repoint within 1 to 2?h. This mission has been proposed to ESA in response to the Cosmic Vision M3 call. Its satellite configuration and payload subsystems were studied as part of previous national efforts permitting us to design a mature configuration that is compatible with a VEGA launch already by 2020.  相似文献   

14.
MAX is a proposed Laue lens gamma-ray telescope taking advantage of Bragg diffraction in crystals to concentrate incident photons onto a distant detector. The Laue lens and the detector are carried by two separate satellites flying in formation. Significant effort is being devoted to studying different types of crystals that may be suitable for focusing gamma rays in two 100 keV wide energy bands centered on two lines which constitute the prime astrophysical interest of the MAX mission: the 511 keV positron annihilation line, and the broadened 847 keV line from the decay of 56Co copiously produced in Type Ia supernovae. However, to optimize the performance of MAX, it is also necessary to optimize the detector used to collect the source photons concentrated by the lens. We address this need by applying proven Monte Carlo and event reconstruction packages to predict the performance of MAX for three different Ge detector concepts: a standard coaxial detector, a stack of segmented detectors, and a Compton camera consisting of a stack of strip detectors. Each of these exhibits distinct advantages and disadvantages regarding fundamental instrumental characteristics such as detection efficiency or background rejection, which ultimately determine achievable sensitivities. We conclude that the Compton camera is the most promising detector for MAX in particular, and for Laue lens gamma-ray telecopes in general.  相似文献   

15.
For conventional radiation detectors fabricated from compound semi-conductors, the wide disparity between the transport properties of the electron and holes, means that detector performances are limited by the carrier with the poorest mobility-lifetime product (μτ). Finite drift lengths introduce an energy dependent depth term into the charge collection process, which effectively limit maximum detection volume to tens of mm3 – entirely unsuitable for the detection of gamma-rays. The recent introduction of the coplanar-grid charge-sensing techniques has overcome this problem by essentially discarding the carrier with the poorest transport properties, thus permitting high spectral resolution and high detection efficiency. For example, energy resolutions of 2% full-width half-maximum at 662 keV have been demonstrated with coplanar-grid CdZnTe detectors of volumes up to 2 cm3. Further improvements in detector performance and yield are being pursued through refinements in electrode design and material quality. Because coplanar-grid CdZnTe detectors can operate at room temperature, they are ideally suited for applications requiring portability, small size, or low power consumption such as planetary space missions. Other potential applications include well logging, medical diagnostics, and gamma-ray astronomy. We discuss the feasibility and design of a solid state gamma-ray detector based on CdZnTe and compare its performance to a large volume Ge detector. As will be shown, a significant improvement can be made if T1Br is used as the detection medium.  相似文献   

16.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   

17.
In 2004 CNES decided to perform 4 phase 0 studies dedicated to Astrophysics and achieved thanks to Formation Flying space systems: ASPICS (A Solar Physics Mission to observe in UV and Visible the Solar Corona between 1.01 and 3.2 Solar Radius), PEGASE (an IR interferometry mission to observe Hot Jupiter, Brown Dwarfs and Proto planetary disks), SIMBOL-X (hard X-rays telescope to observe: Accretion onto compact objects, Black Holes, obscured Galactic Nuclei, ˙˙˙˙) and MAX (a Nuclear Astrophysics Mission to observe: Supernovae, Neutron Stars,˙). For this last mission, presented here, two spectral bands around important gamma-ray lines have been selected (450–530 and 800–900 keV). The formation flight allows to realise a long focal length of 80–90 m which is necessary to build a reasonably sized gamma-ray telescope based on a Laue crystal lens. The Space System design allows to have a good spacecrafts mass margin in High Elliptical Orbit with a Soyuz launch (Initial Orbit: Perigee altitude ∼44,000 km and Apogee altitude ∼253,000 km).  相似文献   

18.
We present the first results from the low-energy detector payload of the solar X-ray spectrometer (SOXS) mission, which was launched onboard the GSAT-2 Indian spacecraft on May 08, 2003 by the GSLV-D2 rocket to study solar flares. The SOXS low-energy detector (SLD) payload was designed, developed, and fabricated by the Physical Research Laboratory (PRL) in collaboration with the Space Application Centre (SAC), Ahmedabad and the Indian Space Research Organization (ISRO) Satellite Centre (ISAC), Bangalore. The SLD payload employs state-of-the-art, solid-state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (−20 °C). The energy ranges of the Si PIN and CZT detectors are 4 – 25 and 4 – 56 keV, respectively. The Si PIN provides sub-keV energy resolution, while the CZT provides ~1.7 keV energy resolution throughout the energy range. The high sensitivity and sub-keV energy resolution of the Si PIN detector allows measuring the intensity, peak energy, and the equivalent width of the Fe-line complex at approximately 6.7 keV, as a function of time in all ten M-class flares studied in this investigation. The peak energy (E p) of the Fe-line feature varies between 6.4 and 6.7 keV with increase in temperature from 9 to 58 MK. We found that the equivalent width (w) of the Fe-line feature increases exponentially with temperature up to 30 MK and then increases very slowly up to 40 MK. It remains between 3.5 and 4 keV in the temperature range of 30 – 45 MK. We compare our measurements of w with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both E p and w with temperature as being to the changes in the ionization and recombination conditions in the plasma during the flare, and as a consequence, the contribution from different ionic emission lines also varies.  相似文献   

19.
Ultra-violet image sensors and UV optics have been developed for a variety of space borne UV astronomy missions. Technology progress has to be made to improve the performance of future UV space missions. Throughput is the most important technology driver for the future. Required developments for different UV detector types – detectors are one of the most problematic and critical parts of a space born mission – and for optical components of the instruments are given in these guidelines. For near future missions we need high throughput optics with UV sensors of large formats, which show simultaneously high quantum efficiency and low noise performance.  相似文献   

20.
We explore the speed distributions of X-ray source motions after the start of chromospheric evaporation in two Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) flares. First, we make CLEAN images at 15 energy bands with a 12 second integration window; then, we outline a flaring loop geometry to cover the looptop and footpoint sources as much as possible. Consistent with the previous steps, we find converging motion of the double footpoint sources along the flaring loop in these two events. This motion is dependent on the energy band and time and is typically seen at 3 – 25 keV, indicating a chromospheric evaporation origin. The speed distributions at various energy bands are measured for the 10 September 2002 flare, which exhibits a separation-to-mergence motion pattern well correlated with the rising-to-decay phases at 50 – 100 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号