首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Submarine mass-transport deposits are important in many ancient and modern basins. Mass-transport deposits can play a significant role in exploration as reservoir, seal or source units. Although seismic data has advanced the knowledge about these deposits, more outcrop studies are needed to better understand gravity mass flows and predict the properties of their resultant deposits. It is proposed that sufficiently well-exposed outcrops of mass-transport deposits can be divided into three strain-dominant morphodomains: headwall, translational and toe. The outcrops of the Rapanui mass-transport deposit, part of the Lower Mount Messenger Formation in the Taranaki Basin, New Zealand, are exposed along a ca 4 km transect in coastal cliffs that enable the identification of the three morphodomains. The aim of this study is to characterize the stratigraphic and sedimentological nature of the Miocene-age Rapanui mass-transport deposit outcrops and the evolution of its basal shear zone. The basal shear zone of a mass-transport deposit is defined as the stratal zone formed in the interface between the overriding mass flow and the underlying in situ deposits or sea floor. Accordingly, the deformation structures in the Rapanui mass-transport deposit and the basal shear zone were documented in an established spatial framework. Traditional methodologies were used to characterize the sedimentology of the Rapanui mass-transport deposit. Data collected from intrafolial folds, rafted blocks and samples from the Rapanui mass-transport deposit were used to investigate strain and matrix texture evolution, estimate palaeoflow direction, and calculate yield strength and overpressure at time of deposition. Additionally, a one-dimensional numerical model was used to test sedimentation-driven overpressure as probable trigger. This work demonstrates that the basal shear zone, as well as the matrix texture of a mass-transport deposit, can vary spatially as sediments from underlying deposits are entrained during shear-derived mixing. This phenomenon can impact the seal potential of mass-transport deposits and their interaction with fluids in the subsurface.  相似文献   

2.
Flows with high suspended sediment concentrations are common in many sedimentary environments, and their flow properties may show a transitional behaviour between fully turbulent and quasi‐laminar plug flows. The characteristics of these transitional flows are known to be a function of both clay concentration and type, as well as the applied fluid stress, but so far the interaction of these transitional flows with a loose sediment bed has received little attention. Information on this type of interaction is essential for the recognition and prediction of sedimentary structures formed by cohesive transitional flows in, for example, fluvial, estuarine and deep‐marine deposits. This paper investigates the behaviour of rapidly decelerated to steady flows that contain a mixture of sand, silt and clay, and explores the effect of different clay (kaolin) concentrations on the dynamics of flow over a mobile bed, and the bedforms and stratification produced. Experiments were conducted in a recirculating slurry flume capable of transporting high clay concentrations. Ultrasonic Doppler velocity profiling was used to measure the flow velocity within these concentrated suspension flows. The development of current ripples under decelerated flows of differing kaolin concentration was documented and evolution of their height, wavelength and migration rate quantified. This work confirms past work over smooth, fixed beds which showed that, as clay concentration rises, a distinct sequence of flow types is generated: turbulent flow, turbulence‐enhanced transitional flow, lower transitional plug flow, upper transitional plug flow and a quasi‐laminar plug flow. Each of these flow types produces an initial flat bed upon rapid flow deceleration, followed by reworking of these deposits through the development of current ripples during the subsequent steady flow in turbulent flow, turbulence‐enhanced transitional flow and lower transitional plug flow. The initial flat beds are structureless, but have diagnostic textural properties, caused by differential settling of sand, silt and cohesive mud, which forms characteristic bipartite beds that initially consist of sand overlain by silt or clay. As clay concentration in the formative flow increases, ripples first increase in mean height and wavelength under turbulence‐enhanced transitional flow and lower transitional plug‐flow regimes, which is attributed to the additional turbulence generated under these flows that subsequently causes greater lee side erosion. As clay concentration increases further from a lower transitional plug flow, ripples cease to exist under the upper transitional plug flow and quasi‐laminar plug flow conditions investigated herein. This disappearance of ripples appears due to both turbulence suppression at higher clay concentrations, as well as the increasing shear strength of the bed sediment that becomes more difficult to erode as clay concentration increases. The stratification within the ripples formed after rapid deceleration of the transitional flows reflects the availability of sediment from the bipartite bed. The exact nature of the ripple cross‐stratification in these flows is a direct function of the duration of the formative flow and the texture of the initial flat bed, and ripples do not form in cohesive flows with a Reynolds number smaller than ca 12 000. Examples are given of how the unique properties of the current ripples and plane beds, developing below decelerated transitional flows, could aid in the interpretation of depositional processes in modern and ancient sediments. This interpretation includes a new model for hybrid beds that explains their formation in terms of a combination of vertical grain‐size segregation and longitudinal flow transformation.  相似文献   

3.
《Sedimentology》2018,65(3):952-992
Hybrid event beds comprising both clean and mud‐rich sandstone are important components of many deep‐water systems and reflect the passage of turbulent sediment gravity flows with zones of clay‐damped or suppressed turbulence. ‘Behind‐outcrop’ cores from the Pennsylvanian deep‐water Ross Sandstone Formation reveal hybrid event beds with a wide range of expression in terms of relative abundance, character and inferred origin. Muddy hybrid event beds first appear in the underlying Clare Shale Formation where they are interpreted as the distal run‐out of the wakes to flows which deposited most of their sand up‐dip before transforming to fluid mud. These are overlain by unusually thick (up to 4·4 m), coarse sandy hybrid event beds (89% of the lowermost Ross Formation by thickness) that record deposition from outsized flows in which transformations were driven by both substrate entrainment in the body of the flow and clay fractionation in the wake. A switch to dominantly fine‐grained sand was accompanied initially by the arrest of turbulence‐damped, mud‐rich flows with evidence for transitional flow conditions and thick fluid mud caps. The mid and upper Ross Formation contain metre‐scale bed sets of hybrid event beds (21 to 14%, respectively) in (i) upward‐sandying bed set associations immediately beneath amalgamated sheet or channel elements; (ii) stacked thick‐bedded and thin‐bedded hybrid event bed‐dominated bed sets; (iii) associations of hybrid event bed‐dominated bed sets alternating with conventional turbidites; and (iv) rare outsized hybrid event beds. Hybrid event bed dominance in the lower Ross Formation may reflect significant initial disequilibrium, a bias towards large‐volume flows in distal sectors of the basin, extensive mud‐draped slopes and greater drop heights promoting erosion. Higher in the formation, hybrid event beds record local perturbations related to channel switching, lobe relocations and extension of channels across the fan surface. The Ross Sandstone Formation confirms that hybrid event beds can form in a variety of ways, even in the same system, and that different flow transformation mechanisms may operate even during the passage of a single flow.  相似文献   

4.
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensu 4 ), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.  相似文献   

5.
Subglacial deformation is crucial to reconstructing glacier dynamics. Sediments associated with the Late Ordovician ice sheet in the Djado Basin, Niger, exhibit detailed structures of the subglacial shear zone. Three main types of subglacial shear zones (SSZ) are discriminated. The lowermost SSZ, developed on sandstones, displays Riedel macrostructures and cataclastic microstructures. These resulted from brittle deformation associated with strong glacier/bed coupling and low pore-water pressure. Where they developed on a clay-rich bed, the overlying SSZ display S–C to S–C′ fabrics, sheath folds, and dewatering structures. These features indicate high ductile shear strain and water overpressure. On fine-grained sand beds, the SSZ exhibit homogenized sand units with sand stringers, interpreted as fluidized sliding beds. The succession of subglacial deformation processes depends on fluid-pressure behavior in relation to subglacial sediment permeability. Fluid overpressure allows subglacial sediment shear strength and ice/bed coupling to be lowered, leading to ice streaming.  相似文献   

6.
以岩芯观察、粒度分析、薄片鉴定、测井资料和地震资料解释等为主要手段,研究渤海湾盆地沾化凹陷孤岛西部斜坡带沙三段主要沉积物重力流类型及其沉积特征,探讨不同触发机制下的沉积物重力流演化过程和构造活动对重力流沉积过程及砂体展布的控制,总结源-汇耦合体系,建立斜坡带重力流砂体发育模式。结果表明:研究区沙三段沉积时期发育异重流、碎屑流、浊流、液化流和滑动-滑塌五种沉积物重力流,具有洪水型和滑塌型两种触发机制,流体演变总体处于碎屑流向浊流演化的早期阶段,推测研究区以北深水区仍发育碎屑流沉积且开始广泛发育浊流沉积。构造作用对研究区沙三段流体性质与演化、同生变形构造和重力流成因砂体的发育与分布具有明显的控制作用。总体上,研究区具有断槽沟谷、断裂坡折、断裂走向斜坡及缓坡沟谷等4种主要的源-汇耦合体系。纵向上,研究区沙三段自下而上由(半)深湖、近岸水下扇、滑塌扇沉积演变为滨浅湖、辫状河三角洲以及扇三角洲沉积;平面上,研究区东部主要发育来自孤岛凸起的扇三角洲前缘和近岸水下扇,西部主要发育来自陈家庄凸起的辫状河三角洲前缘,中部主要发育串珠状滑塌扇体。  相似文献   

7.
Sandy turbidites, grain flows, conglomeratic mass-flows and oxide-facies iron formation are present in the late Archaean Beardmore-Geraldton terrain, a metasedimentary belt which extends for at least 80 km in an E-W direction. The marine portion of this basin contains four lithofacies associations (LA): (1) Thinbedded, iron formation-clastic sediment association. This association represents a continuum of deposit types containing iron formation; subtypes are defined on the basis of bedding attributes and the proportion of iron formation to sand/silt. (2) Thin-bedded, turbidite-dominated association. These sediments consist mostly of silt/sand beds which either show no vertical trends, or thin and fine upwards over a few metres. (3) Medium-bedded, turbidite-dominated association. Most of these sediments are medium to coarsegrained, vertically unstructured sand sequences with occasional structured intervals. (4) Thick-bedded association. This is dominated by poorly graded sands up to 7–8 m in thickness. Sand beds are characterised by a thin basal zone of coarse sand and pebbles, a large central interval containing a mixture of medium and coarse sand, and a thin upper zone of fine sand/silt. The overall depositional system was initiated by transport of sediment by braided streams to the strand area where it accumulated in distributary mouth bars. We infer a nearshore break in slope, locally with large channels (LA 4) extending from close to the strand line across deltaic surfaces to the deeper portions of submarine fans (structured portions of LA 3). However, many deltaic surfaces probably were not tapped by major channels, but merged downslope into a submarine ramp. Sediment was transported across the ramp by slump events and sheet-like grain flows (unstructured portions of LA 3). Iron formation and LA 2 sediments probably accumulated both in upper-mid ramp areas with low sediment delivery rates, and distal to fan-ramp successions. As major streams on the braid plain changed position, associated submarine channels and slump-fed ramp deposits also would have shifted laterally. This produced overlap of different facies associations in both the fan and ramp environments, which may explain why observed vertical trends in bedding are limited to several metres. We suggest that on narrow, active Archaean cratonic margins, additional non-regular processes such as variations in sediment supply related to periods of heightened pyroclastic activity, and seismic activity associated with the arc, also contributed to the lack of vertically structured sequences. Turbidite sequences in such environments in general may contain important contributions from both submarine ramp and submarine fan sedimentation.  相似文献   

8.
Sediment ripples are caused by systematically-spaced transverse roller vortex systems in a moving fluid undergoing shear. With greater shear, these transverse rollers change over into longitudinal (helicoidal) vortices. This is the basic cause for the change from so-called ‘lower flow regime’ conditions to ‘upper flow regime’ conditions. All characteristics of these two regimes (sediment transport rate, bed form, sedimentary structures) are logically explained by attributing them to change in type of vortex system. For currents depositing sediments, there are three orders of magnitude of vortices, each order beginning with transverse rollers, passing through festoon to longitudinal rollers. A chaos zone (antidunes) ensues, followed by resumption of transverse rollers that are five to ten times as large as those in the previous order. Features of river sediments, marine sands, turbidites, desert sand dunes, sky, and stars are satisfactorily explained by this model.  相似文献   

9.
Characterizing stream erosion in any steep mountain landscape is arduous, but the challenge level increases when the stream flows through a glaciated catchment frequently modified by hillslope debris.Glacial landforms and stochastic mass wasting in alpine systems may interfere with sediment delivery to downstream sites where detrital sediments are often collected to represent upstream bedrock sources.To use detrital sediments as indicators of erosion, we need to understand potential sediment accumulation in flat glaciated reaches or behind rockfall barriers. This study investigates the stream channel in Garnet Canyon, a glaciated catchment located in the central Teton Range, to describe hillslope coupled channel morphology and the subsequent effects on sediment transport throughout the catchment.Stream cross-section surveys and sediment size measurements of the surface bedload were collected in the field within a glacially flattened segment of Garnet Canyon. Calculations of shear stress conditions allowed evaluation of the importance of mineral densities on potential grain entrainment. The length of the Garnet Canyon stream observed in this study was coupled with hillslope deposits. Critical shear stresses were sufficient to move gravel-sized sediments through all sections when calculated with quartz mineral density and through most sections when applying apatite mineral density. These results verify the application of detrital sediments to evaluate erosion rates or spatial bedrock sources because snowmelt stream flow efficiently moves entrained sediment past glacially reduced slopes and potential talus barriers.  相似文献   

10.
R.M. Carter 《Earth》1975,11(2):145-177
Sediments will remain at rest on the sea-floor provided forces of shear resistance exceed the downslope shear stress imposed by gravity. The shear resistance of granular water-saturated sediments is discussed within the constraints imposed by the Coulomb model of shear failure, and the phenomena of thixotropy, liquefaction, retrogressive flow sliding and fluidization are discussed as mechanisms for producing the mass-mobilisation of sediment. Processes of laminar mass-flow (= inertia flow) are broadly divided into those involving water as the interstitial fluid (grain-flow) and those having an interstitial fluid of enhanced viscosity (slurry-flow). Recent and experimental examples of inertia-flow are summarised and discussed under the headings grain-fall, grain-flow, slump-creep and fluxoturbidites. It is concluded that grain-flow and slump-creep deposits may be more widespread in the sedimentary record than present reports indicate. It is recommended that the term fluxoturbidite be restricted to its original sense, to describe the deposits of proximal turbidites in which the immediately pre-depositional transport was by inertia-flow. A suggested terminology for subaqueous mass-transport processes and their products is summarised in the form of a flow-chart, terminological distinction being drawn between the processes of mobilisation, transport and deposition of the sediment, and between the various sedimentary beds or facies that result from emplacement by mass-transport.  相似文献   

11.
In three pits in the Leuvenumsche Beek Valley (near Ermelo and Elspeet), massive and diffusely banded clean gravelly sands, found in association with sandy sediments showing some similarities to the Bouma sequence, were interpreted as originating from sediment gravity flows. The flows, which came to rest on a ca. 6° paleoslope, probably originated from slumping of parts of the ice-pushed ridges at either side of an ice-marginal lake.Major characteristic features in the three sand pits studied are U-shaped channel forms with a maximum depth and width of 10 × 25 rmm. The fills consist of sand and gravels, locally containing giant sand-clasts. The sediments just below the base of these channel-forms are commonly distorted and folded. Especially the massive more sandy fills are surrounded by a finer-grained diffusely bedded and inversely graded zone.These sedimentary features suggest that “rigid” sediment plugs sheared downslope, generating a finer-grained shear zone around the plug scouring a slide scar till its present semi-cylindrical form and preserving the steep sides (exceeding the angle of repose) of the channel-form by “freezing”.The U-shaped channel forms (plugged troughs) are locally overlain by shallower gently sided trough structures, with mainly diffusely banded infillings. Very shallow and often smaller troughs are found again on top of these massive and diffusely banded infillings. The sediments in these troughs consist of repetitions of two types of microsequences: (1) thickly bedded sequences of normally graded massive sands, near-horizontal stratifications, plane beds and cross-bedded sets; and (2) thinly bedded sequences of relatively thick units TA and thin units TC and TD of the Bouma sequence.The repetitions of the microsequences are interpreted as flow pulsations. Upwards thinning of the sequence, together with a finer grain size may point to waning flow conditions. Their association with plugged troughs is suggestive of retrogressive flow-slides.  相似文献   

12.
Li  Pu  Wang  Jiading  Hu  Kaiheng  Shen  Fei 《Landslides》2021,18(9):3041-3062

Channel morphology and bed sediment erodibility are two crucial factors that significantly affect debris flow entrainment processes. Current debris flow entrainment models mostly hypothesize the erodible beds are infinite with uniform slopes. In this study, a series of small-scale flume experiments were conducted to investigate the effects of bed longitudinal inflexion and sediment porosity on basal entrainment characteristics. Experimental observations revealed that sediment entrainment is negligible at early stages and accelerates rapidly as several erosion points appear. Continual evolution of flow-bed interfaces changes interactions between debris flows and bed sediments, rendering the interfacial shear action involved into a mixed shear and frontal collisional action. Lower bed sediment porosity will change the spatial arrangement and orientation of particle mixture, strengthen the interlocking and anti-slide forces of adjacent sediment particles, and promote the formation of particle clusters, all of which will increase bed sediment resistance to erosion. By examining the post-experimental bed morphology, the slope-cutting amounts and topographic reliefs are determined to positively correlate with longitudinal transition angles. These high topographic reliefs may indicate the propensity of triangular slab erosion, rather than strip-shaped slab erosion, in non-uniform channels with relatively steep erodible beds. Empirical formulas are obtained that denote the relationships among bed sediment strength, channel curvature radius, and sediment porosity through a multi-parameter regression analysis. This study may aid in clarifying the complex coupling effects of spatial variations in debris flow dynamics as well as sediment erodibility and bed morphology in non-uniform channels with abundant seismic loose material.

  相似文献   

13.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   

14.
Sediments deposited in a lake at the front of a glacier in the Svartisen area, Norway, have been studied between 1957 and 1974. Until 1959, they were almost completely covered by an outwash plain (sandur), but subsequent erosion has exposed glacial lake sediments more than 70 m deep within a rock basin about 2·5 km long and 1 km wide. The basin was filled by sand and silt carried from beneath the glacier Austerdalsisen by two rivers, each of which deposited a delta in the lake. As the deltas advanced, laminated pro-delta silt was covered by crossbeds of fine sand and silt, and by near-horizontal sheets of fine sediments laid down between the delta-fronts and the distal end of the rock basin. Although both slumping and loading caused minor disturbance of sediments at the lake floor, deformation was of local significance only. Movement of a mass of sediment across the floor, probably triggered by a ‘seismic event’ related to movement of the glacier or to calving at the floating tongue, created a recumbent fold in laminated sand and silt, but transfer of sediment over the lake bed was rare once it had been deposited. Varves are not common at Austerdalsisen, indicating that water temperature, lake chemistry or variations of water and sediment discharge from the glacier were unfavourable for their formation; rhythmic deposition from density flows of sediments carried from beneath the glacier rarely occurred within the Austerdalsisen basin.  相似文献   

15.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

16.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

17.
An exceptionally large tsunami affected the coastline of southern Chile during the Pliocene. Its backflow eroded coarse beach and coastal dune sediments and redistributed them over the continental shelf and slope. Sandstone dykes and sills injected from the base of the resulting hyperconcentrated flow into underlying cohesive muds, assisted in plucking up large blocks of the latter and incorporating them into the flow. Locally, the rip-up intraclasts were fragmented further by smaller-scale injections to form a distinct breccia of angular to rounded mudstone clasts within a medium to coarse sandstone matrix. Sandstone sills in places mimic normal sedimentary beds, complete with structures resembling inverse gradation, planar laminae, as well as ripple and trough cross-lamination. These were probably formed by internal sediment flow and shear stress as the semi-liquefied sand was forcefully injected into cracks. In borehole cores, such sills can easily be misinterpreted as normal sedimentary beds, which can have important implications for hydrocarbon exploration.  相似文献   

18.
粒径小于0.005mm的饱和淤泥和黏土等对地震和外力扰动产生的敏感变化特性被称为触变性。地震触发的软沉积物流动变形构造包括液化流动变形与触变流动变形两大类,前者多指沙层和碳酸盐沉积物的液化流动变形,后者指饱和的泥质沉积物触变流动变形。在地层剖面中,饱和淤泥、淤泥质土、黏土、硅泥(胶体)、碳酸盐灰泥等黏性沉积物的触变流动变形构造广布,它们多与沙层等的液化变形构成复合变形构造,但中外地质学家对触变流动变形构造注意较少,往往把它们笼统解释为液化流动构造。近年来地震触发饱和淤泥的触变流动变形现象逐渐引起地质学家的关注。作者对国内多个地层剖面中地震触发的饱和淤泥流动变形记录进行了描述和成因解释,并按照触变流动变形的方向性归纳出4类模式,即①向上流动、②向下流动、③同时向上及向下流动和④近水平方向流动,希望引起从事软沉积物变形和古地震研究的地质学家的关注。  相似文献   

19.
海南岛洋浦湾沉积作用研究   总被引:9,自引:0,他引:9  
王颖  朱大奎 《第四纪研究》1996,16(2):159-167
本文对海南岛洋浦湾海域的洋浦湾、新英湾、洋浦深槽及拦门沙浅滩的沉积环境和沉积特征做了描述、讨论,对河流、海岸侵蚀和珊瑚礁生物的3种沉积物来源及数量做了分析计算,得出其总量为9×104/a。根据钻孔柱状样的14C及210Pb分析,得出8000aB.P.以来沉积速率为0.1~0.2cm/a,近百年来沉积速率为1~2cm/a。  相似文献   

20.
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号