首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
山区特大地震往往导致大量堰塞湖,例如2008年汶川地震形成了至少257个堰塞湖,并且主震后发生了大量余震,这些余震可能会影响堰塞坝体的安全状态。通过大型振动台模型试验,研究了余震及库水耦合作用下堰塞坝体的破坏及溃决机理和过程。共进行了两组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体Ⅰ)和基本不含黏粒且颗粒较大(坝体Ⅱ)的两种坝体。在不同水位条件下进行振动台试验。研究成果表明:(1)地震和库水耦合作用下堰塞坝体的主要溃决方式是漫顶溢流,主要溃决过程为地震力使松散的堰塞坝体发生沉陷,库水渗入使沉陷加剧,最终水位上升漫过坝顶发生溢流冲蚀破坏。(2)地震一般不会直接引起堰塞坝体的破坏。地震力对坝体稳定性的主要影响是使坝体发生沉陷变形。在地震和库水耦合作用下,坝体沉陷比单一因素作用下更为剧烈,因此地震作用会使漫顶溢流提前发生。(3)地震和库水耦合作用下坝体Ⅰ沉陷量大于坝体Ⅱ,说明现实中由大粒径岩土体组成的堰塞坝体具有更好的稳定性。  相似文献   

2.
This paper presents a 3D bonded discrete element and lattice Boltzmann method for resolving the fluid‐solid interaction involving complicated fluid‐particle coupling in geomaterials. In the coupled technique, the solid material is treated as an assembly of bonded and/or granular particles. A bond model accounting for strain softening in normal contact is incorporated into the discrete element method to simulate the mechanical behaviour of geomaterials, whilst the fluid flow is solved by the lattice Boltzmann method based on kinetic theory and statistical mechanics. To provide a bridge between theory and application, a 3D algorithm of immersed moving boundary scheme was proposed for resolving fluid‐particle interaction. To demonstrate the applicability and accuracy of this coupled method, a benchmark called quicksand, in which particles become fluidised under the driving of upward fluid flow, is first carried out. The critical hydraulic gradient obtained from the numerical results matches the theoretical value. Then, numerical investigation of the performance of granular filters generated according to the well‐acknowledged design criteria is given. It is found that the proposed 3D technique is promising, and the instantaneous migration of the protected soils can be readily observed. Numerical results prove that the filters which comply with the design criteria can effectively alleviate or eliminate the appearance of particle erosion in dams.  相似文献   

3.
A fully coupled transient two‐dimensional model was employed to study fundamentals of flood‐induced surface erosion in a particle bed. The interaction of the liquid and solid phases is the key mechanism related to surface erosion. The solid phase was idealized at a particle scale by using the discrete element method. The fluid phase was modeled at a mesoscale level and solved using the lattice Boltzmann method. The fluid forces applied on the particles were calculated on the basis of the momentum the fluid exchanges with the particle. The proposed approach was used to model both single particles and particle beds subjected to Couette flow conditions. The behavior of both the single particle and the particle bed depended on particle diameter and surface shear fluid velocity. The conducted simulations show that the fluid flow profile penetrates the bed for a small distance. This penetration initiates sheet‐flow and surface erosion as the fluid interacts with particles. The effect of suppressing particle rotation on the fluid‐induced forces on the particle was also examined. Suppressing particle spinning may lead to underestimated erosion rate. Results of fluid and particle velocities were compared against experimental results and appeared to agree with the observed trends.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A coupled continuum‐discrete hydromechanical model was employed to analyse the liquefaction of a saturated loose deposit of cohesionless particles when subjected to a dynamic base excitation. The pore fluid flow was idealized using averaged Navier–Stokes equations and the discrete element method was employed to model the solid phase particles. A well established semi‐empirical relationship was utilized to quantify the fluid–particle interactions. The conducted simulations revealed a number of salient micro‐mechanical mechanisms and response patterns associated with the deposit liquefaction. Space and time variation of porosity was a major factor which affected the coupled response of the solid and fluid phases. Pore fluid flow was within Darcy's regime. The predicted response exhibited macroscopic patterns consistent with experimental results and case histories of the liquefaction of granular soil deposits. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Experimental study on cascading landslide dam failures by upstream flows   总被引:1,自引:1,他引:0  
Landslide dams in mountainous areas are quite common. Typically, intense rainfalls can induce upstream flows along the sloping channel, which greatly affects the stability and failure modes of landslide dams. If a series of landslide dams are sequentially collapsed by an incoming mountain torrent (induced by intense rainfall), large debris flows can be formed in a short period of time. This also amplifies the magnitude of the debris flows along the flow direction. The catastrophic debris flows, which occurred in Zhouqu, China on August 8, 2010, were indeed caused by intense rainfall and the upstream cascading failure of landslide dams along the gullies. Experimental tests were conducted in a sloping channel to understand the dynamic process of cascading landslide dam failures and their effect on flow scale amplification. Similar to the Zhouqu conditions, the modeled landslide dams were distributed along a sloping channel and breached by different upstream flows. For each experiment, the front flows were sampled, the entrained grain sizes were analyzed, and the front discharge along the channel was measured. The results of these experiments show that landslide dams occurring along the channel can be destroyed by both high and low discharge flows, although the mechanisms are quite different for the two flow types. Regardless of flow type, the magnitude of the flows significantly increases after a cascading failure of landslide dams, resulting in an increase in both the diameter and the entrained coarse particles percentage.  相似文献   

6.
ABSTRACT
Some new aspects of the development of density surges in channels are developed from recent experimental results. A density surge is characterized by the flow of a finite amount of dense fluid. This dense fluid may be a saline-water solution, a saline-water solution with tracers (sand in suspension) or a pure suspension (sand in suspension in fresh water).
The experimental results show in particular that: (1) the velocity of the surge is effectively proportional to the square root of the initial volume, (2) the velocity of the surge increases with the increase of the initial density of the heavy fluid, proportionally to the square root of the ratio of density difference to the ambient fluid density, (3) the speed of the surge increases again with an increase of the slope.
For pure suspensions the experiments show that velocities slow down much more quickly than for saline solutions with the same initial density, due to loss of negative buoyancy.
The effects of the initial density and of the size of the grains on the distribution of sediments are described.  相似文献   

7.
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensu 4 ), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.  相似文献   

8.
Batch and flow-through experiments were performed on quartz–feldspar granular aggregates at hydrothermal conditions (up to ≈150 °C, up to 5 MPa effective pressure, and near-neutral pH) for up to 141 days. The effect of dissolution–precipitation reactions on the surface morphology of the mineral grains was investigated. The starting materials as well as the solids and fluids resulting from the experiments were characterized using BET, energy dispersive X-ray spectroscopy, electron microprobe analysis, inductively coupled plasma-optical emission spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, and X-ray fluorescence spectroscopy. The electrical conductivity of fluid samples was used as a proxy for the evolution of the fluid composition in the experiments. The chemical analyses of the fluids in combination with hydrogeochemical simulations with PHREEQC suggested the precipitation of Al–Si-bearing solid phases. Electron microscopy confirmed the formation of secondary amorphous Al–Si-bearing solid phases. The microscopic observations are consistent with a process of stoichiometric dissolution of the mineral grains, transport of dissolved ions in the fluid phase, and spatially coupled precipitation of sub-μm sized amorphous particles on mineral surfaces. These findings shed light onto early stages of diagenesis of quartz–feldspar sands and indicate that amorphous phases may be precursors for the formation of crystalline phases, for example, clay minerals.  相似文献   

9.
On 13 August 2010, significant debris flows were triggered by intense rainfall events in Wenchuan earthquake-affected areas, destroying numerous houses, bridges, and traffic facilities. To investigate the impact force of debris flows, a fluid–structure coupled numerical model based on smoothed particle hydrodynamics is established in this work. The debris flow material is modeled as a viscous fluid, and the check dams are simulated as elastic solid (note that only the maximum impact forces are evaluated in this work). The governing equations of both phases are solved respectively, and their interaction is calculated. We validate the model with the simulation of a sand flow model test and confirm its ability to calculate the impact force. The Wenjia gully and Hongchun gully debris flows are simulated as the application of the coupled smoothed particle hydrodynamic model. The propagation of the debris flows is then predicted, and we obtain the evolution of the impact forces on the check dams.  相似文献   

10.
Hydraulic fracturing (HF) treatment often involves particle migration and is applied for propping or plugging fractures. Particle migration behaviors, e.g., bridging, packing, and plugging, significantly affect the HF process. Hence, it is crucial to effectively simulate particle migration. In this study, a new numerical approach is developed based on a coupled element partition method (EPM). The EPM is used to model natural and hydraulic fractures, in which a fracture is allowed to propagate across an element, thereby avoiding remeshing in fracture simulations. To characterize the water flow process in a fracture, a fully hydromechanical coupled equation is adopted in the EPM. To model particle transportation in fractures with water flow, each particle is treated as a discrete element. The particles move in the fracture as a result of being dragged by fluid. Their movement, contact, and packing behaviors are simulated using the discrete element method. To reflect the plugging effect, an equivalent aperture approach is proposed. Using this method, the particle migration and its effect on water flow are well simulated. The simulation results show that this method can effectively reproduce particle bridging, plugging, and unblocking in a hydraulic fracture. Furthermore, it is demonstrated that particle plugging significantly affects water flow in a fracture and hence the propagation of hydraulic fracture. This method provides a simple and feasible approach for the simulation of particle migration in a hydraulic fracture.  相似文献   

11.
Existing formulations for bed sediment entrainment under steady flow are incapable of explaining two well-documented observational facts: (i) water flow requires considerably higher dimensionless shear stresses to move the bed grains than air flow; and (ii) under open channel flow, steep granular beds are more stable than beds with milder slopes. These two facts, together with recent direct measurements of forces acting on bed grains giving time-mean negative drags ( Schmeeckle et al. , 2007 ), question the conventional models of forces used so far. Here, fluid forces acting on bed particles are treated in a new way in order to take into consideration the fundamental interference effects, thus obtaining appropriate magnitude estimates that exhibit good agreement with direct force measurements by Schmeeckle et al. (2007) . Impulsive pressure fluctuations generated by turbulence are shown to be capable of dislodging the bed grains by saltation under air flow, whereas they can only produce a rocking effect under water flow, thus explaining the first anomaly. On the other hand, previous work by the authors allows a direct estimate of space averaged time-mean drag and lift forces exerted on bed grains. Both components have the same order of magnitude but, contrary to the common belief, the mean lift is downward, which provides an explanation for the second anomaly. Finally, spatial disturbances of pressure, both positive and negative, appear to generate maximum, persistent, local forces considerably greater than mean forces, thus allowing an explanation for the observed negative time-mean drag. A new formula for predicting incipient motion of sediment under open channel flow is derived, which incorporates all dynamically significant effects and gives very good agreement with observation for the entire range of bed slopes.  相似文献   

12.
The mobility of long-runout landslides   总被引:17,自引:0,他引:17  
Fran  ois Legros 《Engineering Geology》2002,63(3-4):301-331
Several issues relevant to the mobility of long-runout landslides are examined. A central idea developed in this paper is that the apparent coefficient of friction (ratio of the fall height to the runout distance) commonly used to describe landslide mobility is physically meaningless. It is proposed that the runout distance depends primarily on the volume and not on the fall height, which just adds scatter to the correlation. The negative correlation observed between the apparent coefficient of friction and the volume is just due to the fact that, on the gentle slopes on which landslides travel and come to rest, a large increase in runout distance due to a large volume corresponds to a small increase in the total fall height, hence to a decrease in the apparent coefficient of friction.

It is shown that the spreading of a fluid-absent, granular flow is not able to explain the large runout distances of landslides, and in particular does not allow the centre of mass to travel further than expected for a sliding block. This contrasts with the behaviour of natural landslides, for which the centre of mass is shown to travel much further than expected from a simple Coulomb model. The presence of an interstitial fluid which can partly or entirely support the load of particles allows the effective coefficient of solid friction to be reduced or even suppressed. Air is not efficient for fluidising large landslides and a loose debris cannot slide over a basal layer of entrapped and compressed air, as air would rapidly pass through the debris in the form of bubbles during batch sedimentation. Water is much more efficient as a fluidising medium due to its higher density and viscosity, and its incompressibility. As water is known to enhance the mobility of the saturated debris flows, it is proposed that water is also responsible for the long runout of landslides. This is consistent with the fact that the increase in runout with volume is similar for debris flows and landslides. Field evidence suggests that most landslides are unsaturated with water but not dry, even on Mars.

Comparison of the velocity of well-documented landslides with that predicted by fluid-absent, granular models shows that these models predict landslides that are much faster and less responsive to topography than natural ones. The relatively low velocities of landslides suggest that energy dissipation is dominated by a velocity-dependent stress and that the coefficient of solid friction is very low. This is consistent with the physics of fluidised or partly fluidised debris and suggests that landslide velocity may be controlled by local slope and flow thickness rather than by the initial fall height. In the absence of a supply of fluid at the base, fluidisation requires a net downward flux of sediment, implying some deposition at the base of landslides, which may thus progressively run out of material. In such a model, the spreading of the portion of a landslide beyond a certain distance would primarily depend on the volume passing this distance and not on the total volume of the landslide. Landslide deposits may therefore have self-similar shapes, in which the area covered beyond a certain distance is a constant function of the volume beyond that distance. It is shown that the shape of some well-documented landslide deposits is in reasonable agreement with this prediction. One consequence is that, as recently proposed for debris flows, assessment of hazards related to landslides should be based on the correlation between the volume and the area covered by the deposit, rather than on the apparent coefficient of friction.  相似文献   


13.
A discrete element method is applied to a three‐dimensional analysis related to sediment entrainment on a micro‐scale. Sediment entrainment is the process by which a fluid medium accelerates particles from rest and advects them upward until they are either transported as bedload or suspended by the flow. Modelling of the entrainment process is a critically important aspect for studies of erosion, pollutant resuspension and transport, and formation of bedforms in environmental flows. Previous discrete element method studies of sediment entrainment have assumed the flow within the particle bed to be negligible and have only allowed for the motion of the topmost particles. At the same time, micro‐scale experimental studies indicate that there is a small slip of the fluid flow at the top of the bed, indicating the presence of non‐vanishing fluid velocity within the topmost bed layers. The current study demonstrates that the onset of particle incipient motion, which immediately precedes particle entrainment, is highly sensitive to this small fluid flow within the topmost bed layers. Using an exponential decay profile for the inner‐bed fluid flow, the discrete element method calculations are repeated with different fluid penetration depths within the bed for several small particle Reynolds numbers. For cases with slip velocity corresponding to that observed in previous experiments with natural sediment, the predicted particle velocity is found to be a few percent of the fluid velocity at the top of the viscous wall layer, which is a reasonable range of velocities for observation of incipient particle motion. This method for prescribing the fluid flow within the particle bed allows for the current discrete element method to be extended in future studies to the analysis of sediment entrainment under the influence of events such as turbulent bursting. Additionally, predictions for the slip velocities and fluid flow profile within the bed suggest the need for further experimental studies to provide the data necessary for additional improvement of the discrete element method models.  相似文献   

14.
The coupled discrete element method and lattice Boltzmann method (DEMLBM) has increasingly drawn attention of researchers in geomechanics due to its mesoscopic nature since 2000. Immersed boundary method (IBM) and immersed moving boundary (IMB) are two popular schemes for coupling fluid particle in DEMLBM. This work aims at coupling DEM and LBM using the latest IBM algorithm and investigating its accuracy, computational efficiency, and applicability. Two benchmark tests, interstitial fluid flow in an ideal packing and single particle sedimentation in viscous fluid, are carried out to demonstrate the accuracy of IBM through semi-empirical Ergun equation, finite element method (FEM), and IMB. Then, simulations of particle migration with relatively large velocity in Poiseuille flow are utilized to address limitations of IBM in DEMLBM modeling. In addition, advantages and deficiencies of IBM are discussed and compared with IMB. It is found that the accuracy of IBM can be only guaranteed when sufficient boundary points are used and it is not suitable for geomechanical problems involving large fluid or particle velocity.  相似文献   

15.
Quality of landslide motion prediction is directly linked to the understanding of the basic flow mechanisms. Although it is known that landslides are granular mass flows and granular flow mechanics is an established area of research, hypotheses on landslide motion are still based on simple geometrical relations and heuristic assumptions. New insights into the development of flow properties of high-speed, high-concentration granular flows are given by results of discrete particle simulations: rapid granular flows are self-organizing dynamic systems that are forced to develop a plastic body rheology. This behaviour must be described by a coefficient of internal friction μCM that refers to the center of mass of a flow. Coefficients of rapid granular flows of inelastic and rough particles, which are typical for common rock materials, do not vary significantly around μ CM ≈0.45 that is definitively smaller than the friction coefficient of soil creep (≈0.6). The motion of the center of mass is superimposed by the spreading of the granular mass that is controlled by the same plastic body rheology. This combined motion is a scale-invariant self-similar process that depends only on the drop height of a landslide and its volume. This allows specification of implications that must be given special attention in the development of future models for landslide prediction.  相似文献   

16.
A hypoplastic constitutive model for debris materials   总被引:1,自引:1,他引:0  
Debris flow is a very common and destructive natural hazard in mountainous regions. Pore water pressure is the major triggering factor in the initiation of debris flow. Excessive pore water pressure is also observed during the runout and deposition of debris flow. Debris materials are normally treated as solid particle–viscous fluid mixture in the constitutive modeling. A suitable constitutive model which can capture the solid-like and fluid-like behavior of solid–fluid mixture should have the capability to describe the developing of pore water pressure (or effective stresses) in the initiation stage and determine the residual effective stresses exactly. In this paper, a constitutive model of debris materials is developed based on a framework where a static portion for the frictional behavior and a dynamic portion for the viscous behavior are combined. The frictional behavior is described by a hypoplastic model with critical state for granular materials. The model performance is demonstrated by simulating undrained simple shear tests of saturated sand, which are particularly relevant for the initiation of debris flows. The partial and full liquefaction of saturated granular material under undrained condition is reproduced by the hypoplastic model. The viscous behavior is described by the tensor form of a modified Bagnold’s theory for solid–fluid suspension, in which the drag force of the interstitial fluid and the particle collisions are considered. The complete model by combining the static and dynamic parts is used to simulate two annular shear tests. The predicted residual strength in the quasi-static stage combined with the stresses in the flowing stage agrees well with the experimental data. The non-quadratic dependence between the stresses and the shear rate in the slow shear stage for the relatively dense specimens is captured.  相似文献   

17.
针对岩体渐进破坏和充填体渗透失稳两种典型突涌水灾害,阐述了动力扰动、开挖卸荷与高水压三者联合作用下岩体渐进破裂机制,以及高渗透压作用下充填体“变强度-变渗透性-变黏度”的渗透破坏机制。针对渗透破坏突涌水的变黏度机制,采用DEM-CFD耦合计算方法,开展了流体黏度对渗透破坏机制影响的定性模拟研究,分析了流体黏度对平均接触力、流量(流速)、孔隙率、颗粒运移过程、运移轨迹以及临界水力梯度的影响规律。结果表明,低黏度条件下的临界水力梯度比高黏度条件下的要小,换言之,低黏度条件下充填体更容易发生渗透破坏;平均接触力对水力梯度临界值的响应最为敏感,而流量难以准确反映该信息。从渗透破坏突涌水的变黏度机制这单一角度出发(不考虑渗透性增大的影响),随着黏性介质流入水体,流体黏度会增大,但流动速度会降低,两者共同作用下反而阻碍了渗透破坏过程的发展。最后,采用DEM-CFD计算方法,对工程尺度突涌水过程进行了模拟,再现了突涌水优势通道的形成与扩展过程,并指出了实现突涌水灾变机制模拟所需解决的参数选取与定量分析难题。  相似文献   

18.
Biot theory predicts wave velocities in a saturated granular medium using the pore geometry, viscosity, densities, and elastic moduli of the solid skeleton and pore fluid, neglecting the interaction between constituent particles and local flow, which becomes essential as the wavelength decreases. Here, a hydro-micromechanical model, for direct numerical simulations of wave propagation in saturated granular media, is implemented by two-way coupling the lattice Boltzmann method (LBM) and the discrete element method (DEM), which resolve the pore-scale hydrodynamics and intergranular behavior, respectively. The coupling scheme is benchmarked with the terminal velocity of a single sphere settling in a fluid. In order to mimic a small amplitude pressure wave entering a saturated granular medium, an oscillating pressure boundary on the fluid is implemented and benchmarked with the one-dimensional wave equation. The effects of input waveforms and frequencies on the dispersion relations in 3D saturated poroelastic media are investigated with granular face-centered-cubic crystals. Finally, the pressure and shear wave velocities predicted by the numerical model at various effective confining pressures are found to be in excellent agreement with Biot analytical solutions, including his prediction for slow compressional waves.  相似文献   

19.
20.
The initiation of particle movement by wind   总被引:4,自引:0,他引:4  
When air blows across the surface of dry, loose sand, a critical shear velocity (fluid threshold, ut), must be achieved to initiate motion. However, since most natural sediments consist of a range of grain sizes, fluid threshold for any sediment cannot be defined by a finite value but should be viewed as a threshold range which is a function of the size, shape, sorting and packing of the surface sediment. In order to investigate the initiation of particle movement by wind a series of wind-tunnel tests was carried out on a range of pre-screened fluvial sands and commercially available glass beads with differing mean sizes and sorting characteristics. A sensitive laser-monitoring system was used in conjunction with a high speed counter to detect initial grain motion and to count individual grain movements. Test results indicate that when velocity is slowly increased over the sediment surface the smaller or more exposed grains are first entrained by the fluid drag and lift forces either in surface creep (rolling) or in saltation (bouncing or hopping downwind). As velocity continues to rise, larger or less exposed grains may also be moved by fluid drag. On striking the surface saltating grains impart momentum to stationary grains. This impact may result in the rebound of the original grain as well as the ejection of one or more stationary grains into the air stream at shear velocities lower than that required to entrain a stationary particle by direct fluid pressure. As a result, there is a cascade effect with a few grains of varying size initially moving over a range of shear velocities (the fluid threshold range) and setting in motion a rapidly increasing number of grains. Results of the tests showed that the progression from fluid to dynamic threshold, based on grain movement, can be characterized by a power function, the coefficients of which are directly related to the mean size and sorting characteristics of the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号