首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Today, most land surface process models have prescribed seasonal change of vegetation with regard to the exchange processes between land and the atmosphere. However, in order to consider the real interaction between vegetation and atmosphere and represent it best in a climate model, the vegetation growth process should be included. In other words, “life” should be brought into climate models. In this study, we have coupled the physical and biological components of AVIM (Atmosphere–Vegetation Interaction Model), a land surface model including plant ecophysiological processes, into the IAP/LASG L9 R15 GOALS GCM. To exhibit terrestrial vegetation information, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere, which is 7.5° longitude and 4.5° latitude. The simulated monthly mean surface air temperature and precipitation is close to the observations. The monthly mean Leaf Area Index (LAI) is consistent with the observed data. The global annual mean net primary production (NPP) simulation is also reasonable. The coupled model is stable, providing a good platform for research on two-way interaction between land and atmosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

2.
Using a recently developed global vegetation distribution, topography, and shorelines for the Early Eocene in conjunction with the Genesis version 2.0 climate model, we investigate the influences that these new boundary conditions have on global climate. Global mean climate changes little in response to the subtle changes we made; differences in mean annual and seasonal surface temperatures over northern and southern hemispheric land, respectively, are on the order of 0.5°C. In contrast, and perhaps more importantly, continental scale climate exhibits significant responses. Increased peak elevations and topographic detail result in larger amplitude planetary 4 mm/day and decreases by 7–9 mm/day in the proto Himalayan region. Surface temperatures change by up to 18°C as a direct result of elevation modifications. Increased leaf area index (LAI), as a result of altered vegetation distributions, reduces temperatures by up to 6°C. Decreasing the size of the Mississippi embayment decreases inland precipitation by 1–2 mm/day. These climate responses to increased accuracy in boundary conditions indicate that “improved” boundary conditions may play an important role in producing modeled paleoclimates that approach the proxy data more closely.  相似文献   

3.
An investigation is made of the “white earth” scenario, wherein the positive feedback mechanism, involving temperature, snow/ice cover,and albedo, renders the earth's surface covered with permanent snow freezes the oceans when the solar input is sufficiently low. A three-dimensional energy budget climate model is used to stimulate the earth's response to a 30% decrease in the solar constant. The decrease occurs over a period of 90 years. The model simulates an additional 100 years to allow conditions to stabilize. At the end of the model run, the planetary mean surface temperature is 204.8°K, the oceans are completely frozen over, and the maximum seasonal mean temperature any grid point of the planet is 251.6°K in the western Gobi Desert in JJA. The highest average annual temperature is 238.7°K in western Zaire. A significant portion of the planet's land surface is free of permanent snow cover. The result of this model run suggest that the hydrologic balance may provide a significant negative feedback mechanism to counter the snow/ice-albedo positive feedback mechanism and that the earth's climate may be less sensitive to variations in the solar constant than previously believed.  相似文献   

4.
We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon-borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I,Q,U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 μm). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100°,120°] and [180°,200°] with a degree of polarization at the level of 4–5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10–20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.  相似文献   

5.
This paper examines the cloud radiative forcing and its impacts on the surface climate for global climate model simulations that use reduced ozone concentrations and land fractions as boundary conditions. In one simulation using present-day land continents, ozone concentrations are reduced to zero and compared to the present-day climate simulation. In the second set of simulations under global ocean conditions, the implied poleward transport of heat by the ocean is varied. The removal of ozone causes an increase in longwave cloud radiative forcing at the top of the atmosphere and the surface. The increase in longwave forcing melts sea-ice and snow at high latitudes leading 10–14°C warmer temperatures and globally a 2°C increase. The global ocean simulations lead to higher cloud fractions than present-day simulation. Without poleward transport of heat by the ocean, surface temperatures cool as a result of higher cloud fractions. Increasing the ocean heat transport by a factor of 3.33 brings about ice-free conditions. An 11°C difference in globally averaged surface air temperatures is found between the enhanced and zero poleward oceanic heat transport simulations. The longwave cloud radiative forcing from high cloud fractions enhance the surface warming in the polar regions during the winter season. Conversely, during the summer season, a high cloud fraction increases the shortwave cloud radiative forcing producing only moderately warm temperatures in the polar regions. High cloud fractions in polar regions during warm periods throughout geologic times may help to explain the reduced equator to pole temperature gradient.  相似文献   

6.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   

7.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

8.
Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal (“internal”) moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 106 m3 of ice mass (0.59 ± 0.02 × 106 m3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.  相似文献   

9.
Inverse and direct methods have been used to analyze a large number of borehole temperature logs in order to infer past climatic changes. Results indicate a warming of 1–2°C in eastern and central Canada during the past 150 years. A period of cooling between 500 and 200 years before present, corresponding to the time of the “Little Ice Age”, has also been identified in the same areas. A regional ground temperature history is estimated for eastern and central Canada from the simultaneous inversion of several temperature logs. The inferred temperature changes appear correlated with the concentration of atmospheric carbon dioxide as reported from a Greenland ice core, and agree with existing meteorological and dendrochronological records for the area.  相似文献   

10.
A previous study of Fox [Fox, A.N. 1993. Snowline altitude and climate at present and during the Last Pleistocene Glacial Maximum in the Central Andes (5°–28°S). Ph.D. Thesis. Cornell University.] showed that for a fixed 0 °C isotherm altitude, the equilibrium-line altitude (ELA) of the Peruvian and Bolivian glaciers from 5 to 20°S can be expressed based on a log–normal expression of local mid-annual rainfall amount (P). In order to extrapolate the function to the whole Andes (10°N to 55°S) a local 0 °C isotherm altitude is introduced. Two applications of this generalised function are presented. One concerns the space evolution of mean inter-annual ELA for three decades (1961–1990) over the whole South American continent. A high-resolution data set (grid data: 10′ for latitude/longitude) of mean monthly air surface temperature and precipitation is used. Mean annual values over the 1961–1990 period were calculated. On each grid element, the mean annual 0 °C isotherm altitude is determined from an altitudinal temperature gradient and mean annual temperature (T) at ground level. The 0 °C isotherm altitude is then associated with the annual precipitation amount to compute the ELA. Using computed ELA and the digital terrain elevation model GTOPO30, we determine the extent of the glacierised area in Andean regions under modern climatic conditions. The other application concerns the ELA time evolution on Zongo Glacier (Bolivia), where inter-annual ELA variations are computed from 1995 to 1999. For both applications, the computed values of ELA are in good agreement with those derived from glacier mass balance measurements.  相似文献   

11.
Land fraction and the solar energy at the top of the atmosphere (solar constant) may have been significantly lower early in Earth's history. It is likely that both of these factors played some important role in the climate of the early earth. The climate changes associated with a global ocean(i.e. no continents) and reduced solar constant are examined with a general circulation model and compared with the present-day climate simulation. The general circulation model used in the study is the NCAR CCM with a swamp ocean surface. First, all land points are removed in the model and then the solar constant is reduced by 10% for this global ocean case.Results indicate that a 4 K increase in air temperature occurs with global ocean simulation compared to the control. When solar constant is reduced by 10% under global ocean conditions a 23 K decrease in air temperature is noted. The global ocean warms much of the troposphere and stratosphere, while a reduction in the solar constant cools the troposphere and stratosphere. The largest cooling occurs near the surface with the lower solar constant.Global mean values of evaporation, water vapor amounts, absorbed solar radiation and the downward longwave radiation are increased under global ocean conditions, while all are reduced when the solar constant is lowered. The global ocean simulation produces sea ice only in the highest latitudes. A frozen planet does not occur when the solar constant is reduced—rather, the ice line settles near 30° of latitude. It is near this latitude that transient eddies transport large amounts of sensible heat across the ice line acting as a negative feedback under lower solar constant conditions keeping sea ice from migrating to even lower latitudes.Clouds, under lower solar forcing, also act as a negative feedback because they are reduced in higher latitudes with colder atmospheric temperatures allowing additional solar radiation to reach the surface. The overall effect of clouds in the global ocean is to act as a positive feedback because they are slightly reduced thereby allowing additional solar radiation to reach the surface and increase the warming caused by the removal of land. The relevance of the results to the “Faint-Young Sun Paradox” indicates that reduced land fraction and solar forcing affect dynamics, heat transport, and clouds. Therefore the associated feedbacks should be taken into account in order to understand their roles in resolving the “Faint-Young Sun Paradox”.  相似文献   

12.
Several temperature-depth profiles measured in Kasai and in Shaba provinces of Zaire using mining exploration boreholes exhibit a significant negative temperature gradient near the surface. This anomalous curvature which extends to 100–200 m depth could reflect the effect of variations in surface conditions. Applying the theory of heat conduction in a semi-infinite homogeneous medium, these profiles indicate a surface warming by 3–4°C. This warming is related to the effect of the environmental changes associated with the mining exploitation and the urbanization during the last 40–90 years.  相似文献   

13.
New temperature logs in wells located in the grassland ecozone in the Southern Canadian Prairies in Saskatchewan, where surface disturbance is considered minor, show a large curvature in the upper 100 m. The character of this curvature is consistent with ground surface temperature (GST) warming in the 20th century. Repetition of precise temperature logs in southern Saskatchewan (years 1986 and 1997) shows the conductive nature of warming of the subsurface sediments. The magnitude of surface temperature change during that time (11 years) is high (0.3–0.4°C). To assess the conductive nature of temperature variations at the grassland surface interface, several precise air and soil temperature time series in the southern Canadian Prairies (1965–1995) were analyzed. The combined anomalies correlated at 0.85. Application of the functional space inversion (FSI) technique with the borehole temperature logs and site-specific lithology indicates a warming to date of approximately 2.5°C since a minimum in the late 18th century to mid 19th century. This warming represents an approximate increase from 4°C around 1850 to 6.5°C today. The significance of this record is that it suggests almost half of the warming occurred prior to 1900, before dramatic build up of atmospheric green house gases. This result correlates well with the proxy record of climatic change further to the north, beyond the Arctic Circle [Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamourex, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries, Science 278, 1251–1256.].  相似文献   

14.
The North Taymyr ice-marginal zone (NTZ) is a complex of glacial, glaciofluvial and glaciolacustrine deposits, laid down on the northwestern Taymyr Peninsula in northernmost Siberia, along the front of ice sheets primarily originating on the Kara Sea shelf. It was originally recognised from satellite radar images by Russian scientists; however, before the present study, it had not been investigated in any detail. The ice sheets have mainly inundated Taymyr from the northwest, and the NTZ can be followed for 700–750 km between 75°N and 77°N, mostly 80–100 km inland from the present Kara Sea coast.The ice-marginal zone is best developed in its central parts, ca. 100 km on each side of the Lower Taymyr River, and has there been studied by us in four areas. In two of these, the ice sheet ended on land, whereas in the two others, it mainly terminated into ice-dammed lakes. The base of the NTZ is a series of up to 100-m-high and 2-km-wide ridges, usually consisting of redeposited marine silts. These ridges are still to a large extent ice-cored; however, the present active layer rarely penetrates to the ice surface. Upon these main ridges, smaller ridges of till and glaciofluvial material are superimposed. Related to these are deltas corresponding to two generations of ice-dammed lakes, with shore levels at 120–140 m and ca. 80 m a.s.l. These glacial lakes drained southwards, opposite to the present-day pattern, via the Taymyr River valley into the Taymyr Lake basin and, from there, most probably westwards to the southern Kara Sea shelf.The basal parts of the NTZ have not been dated; however, OSL dates of glaciolacustrine deltas indicate an Early–Middle Weichselian age for at least the superimposed ridges. The youngest parts of the NTZ are derived from a thin ice sheet (less than 300 m thick near the present coast) inundating the lowlands adjacent to the lower reaches of the Taymyr River. The glacial ice from this youngest advance is buried under only ca. 0.5 m of melt-out till and is exposed by hundreds of shallow slides. This final glaciation is predated by glacially redeposited marine shells aged ca. 20,000 BP (14C) and postdated by terrestrial plant material from ca. 11,775 and 9500 BP (14C)–giving it a last global glacial maximum (LGM; Late Weichselian) age.  相似文献   

15.
Recent observations showing substantial diurnal changes in velocities of glaciers flowing into the ocean, measured at locations far inland of glacier grounding lines, add fuel to the ongoing debate concerning the ability of glaciers to transmit longitudinal-stress perturbations over large distances. Resolution of this debate has major implications for the prediction of glacier mass balance, because it determines how rapidly a glacier can respond dynamically to changes such as weakening or removal of an ice shelf. Current IPCC assessment of sea-level rise takes little account of such changes, on the assumption that dynamic responses would be too slow to have any appreciable effect on ice discharge fluxes. However, this assumption must be questioned in view of observations showing massive increases in glacier velocities following removal of parts of the Larsen Ice Shelf, Antarctica, and of others showing diurnal velocity changes apparently linked to the tides.Here, I use a simple force-perturbation model to calculate the response of glacier strain rates to tidal rise and fall, assuming associated longitudinal-force perturbations are transmitted swiftly far inland of the glacier grounding line. Results show reasonable agreement with observations from an Alaskan glacier, where the velocity changes extended only a short distance up-glacier. However, for larger Antarctic glaciers, big velocity changes extending far upstream cannot be explained by this mechanism, unless ice-shelf “back forces” change substantially with the tides.Additional insight will require continuous measurement of velocity and strain-rate profiles along flow lines of glaciers and ice shelves. An example is suggested, involving continuous GPS measurements at a series of locations along the centre line of Glaciar San Rafael, Chile, extending from near the calving front to perhaps 20 km inland. Tidal range here is about ± 0.8 m, which should be sufficient to cause a variation in ice-front velocity of ± 2 cm h− 1 about its average value of 75 cm h− 1, assuming local seawater depth of 150 m and glacier thickness of 200–400 m.  相似文献   

16.
We present three new benthic foraminiferal δ13C, δ18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial δ13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) δ13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [‰ VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic δ13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4–0 ka) and LGM (22–16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air–sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed δ13CDIC values of glacial circumantarctic deep water of approximately 0.3‰ to 0.4‰. Our reconstruction brings Atlantic and Southern Ocean δ13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic δ18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.  相似文献   

17.
The time structure and intensity of OSO-6 observations of EUV bursts were studied in relation to the corresponding 10–1030 Å enhancements deduced from SFD data. Impulsive EUV emissions from lines normally emitted from either the chromosphere or from the chromosphere-corona transition region rise simultaneously with the 10–1030 Å flash, to within the time resolution of the OSO-6 observations. Mg × 625 Å also showed concurrent impulsive emissions and a close intensity relation to the 10–1030 Å enhancement. The observational results are consistent with the hypothesis that most of the EUV radiation is being produced thermally in a region of chromospheric density, which is being heated by collisional losses of nonthermal electrons.  相似文献   

18.
L.A. Sromovsky  P.M. Fry 《Icarus》2007,192(2):527-557
Seven-band near-IR adaptive optics imaging of Uranus by the Keck II telescope during 2004, with the assistance of selected Hubble Space Telescope images, provides new constraints on the uranian vertical cloud structure and CH4 mixing ratio, after tuned deconvolutions are applied to remove significant limb darkening distortions. The most strongly absorbing bands approximately agree with the stratospheric haze model of Rages et al. [Rages, K., Pollack, J.B., Tomasko, M.G., Doose, L.R., 1991. Icarus 89, 359–376]. The next most absorbing bands suggest a CH4 relative humidity of 50–60% above the 1.2-bar condensation level. Window channels imply effective cloud pressures at 12° S that vary from 9 to 3.5 bars, and reflectivity values that vary from 7 to 4%, as the assumed CH4 mixing ratio varies from 0.75 to 4%. The shape of the center-to-limb radiance profile is in best agreement with the deep cloud being translucent, with relatively low optical depth, and is most consistent with low methane mixing ratios (0.75–1%) if the cloud particles are conservative. Non-conservative particles provide good fits over a wide range of mixing ratios. If C and S are enhanced by the same factor over solar mixing ratios, then the cloud pressures inferred from near-IR observations would be less than H2S condensation pressures for methane mixing ratios of 1.3% or greater. The bright band at 45° S must be partly produced by increased particulate scattering at pressures 2 bars to be consistent with its absence in 1.9-μm images and its presence in 0.619-μm images. The reflectivity of the lower clouds declines to nearly negligible values in the northern hemisphere, where I/F observations beyond 50° N are nearly those of a clear atmosphere. The most surprising result is the general lack of scattering originating from the 1.2-bar region where methane is expected to condense. Exceptions occur for discrete features. A large and long-lived discrete feature at 34° S is associated with particulates near 700 mb and 4.5 bars. The highest discrete feature, near 26° N, reached pressures 200 mb and was eleven times brighter than the background atmosphere in K images.  相似文献   

19.
In this paper, we present 50 surface water samples collected during the IMAGES III cruise (June–July 1997) along a transect from New Zealand to the China Sea (42°S–178°E, 21°N–120°E) covering a temperature range from 13.3 to 30.4 °C. A very worthwhile aspect of this study is a coupling of both biomarker (alkenone) and coccolithophorid counting. We show that the U37k′–temperature relationship is very similar to the Prahl et al. [Geochim. Cosmochim. Acta 52 (1988) 2203] culture calibration and to the global core top calibration of Müller et al. [Geochim. Cosmochim. Acta 62 (1998) 1757]. However, in the warmest surface waters of the Western Pacific ocean (>26.4 °C) where Gephyrocapsa oceanica is likely the most widespread species, the associated U37k′ has a constant value of 1.0. The consequence is that above this temperature threshold, U37k′ cannot be used as an accurate paleothermometer.  相似文献   

20.
The paper presents simulations of the energetic neutral atom (ENA) production in the Mercury magnetosphere and the obtained ENA images for the equatorial and polar vantage points. The ENA fluxes are found to be 102–103 (cm2 srskeV)−1 and up to 104–105 (cm2 srskeV)−1 in the energy range 10–50 keV. Due to the small size of the magnetosphere, the particles injected in the tail can fill up the entire dayside magnetosphere making possible ENA imaging of the magnetospheric shape. The high variability of the Hermean magnetosphere gives rise to pulsating ENA emissions (ENA “flashes”) which can be used to study the global dynamics. The ENA instrument requirements, 10°×10° angular resolution and 20 s accumulation time, can be easily met by modern ENA instrumentation. Therefore, ENA imaging of the Mercury magnetosphere is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号