首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the most puzzling features of the Kuiper Belt, which has been confirmedby numerous surveys, is the optical colour diversity that seems to prevail among the observed TNOs. TNOs and Centaurs have surfaces showing dramaticallydifferent colours and spectral reflectances, from neutral to very red. With therelatively few visible-NIR colour datasets available, the colour diversity seemsalso to extend to the near infrared wavelengths. Relevant statistical analyses havebeen performed and several studies have pointed out strong correlations betweenoptical colours and some orbital parameters (i, e, q) for the Classical KuiperBelt objects. On the other hand, no clear trend is obvious for Plutinos, Scatteredobjects or Centaurs. Another important result is the absence of correlation of colourswith size or heliocentric distance for any of the populations of outer Solar Systemobjects. The strong colour anisotropy found is important because it is a diagnosticof some physical effects processing the surfaces of TNOs and/or some possiblecomposition diversity. In this paper, we will review the current knowledge of thecolour properties of TNOs, describe the observed colour distribution within theEdgeworth–Kuiper belt, and address the problem of their possible origin.  相似文献   

2.
Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H+, N+, Ar++, and He+ ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.  相似文献   

3.
Direct observations of the nuclear surfaces of comets have been difficult; however a growing number of studies are overcoming observational challenges and yielding new information on cometary surfaces. In this review, we focus on recent determinations of the albedos, reflectances, and thermal inertias of comet nuclei. There is not much diversity in the geometric albedo of the comet nuclei observed so far (a range of 0.025 to 0.06). There is a greater diversity of albedos among the Centaurs, and the sample of properly observed TNOs(2) is still too small. Based on their albedos and Tisser and invariants, Fernández et al. (2001) estimate that about 5% of the near-Earth asteroids have a cometary origin, and place an upper limit of 10%. The agreement between this estimate and two other independent methods provide the strongest constraint to date on the fraction of objects that comets contribute to the population of near-Earth asteroids. There is a diversity of visible colors among comets, extinct comet candidates, Centaurs and TNOs. Comet nuclei are clearly not as red as the reddest Centaurs and TNOs. What Jewitt (2002) calls ultra-red matter seems to be absent from the surfaces of comet nuclei. Rotationally resolved observations of both colors and albedos are needed to disentangle the effects of rotational variability from other intrinsic qualities. New constraints on thermal inertia of comets are consistent with previous independent estimates. The thermal inertia estimates for Centaurs 2060 Chiron and 8405 Asbolus are significantly lower than predicted by thermal models, and also lower than the few upper limits or constraints known for active, ordinary nuclei.  相似文献   

4.
We present in this work the observations performed with SINFONI in the framework of a new ESO-Large Program (2006-2008) on Trans-Neptunian Objects (TNOs) and Centaurs. We obtained 21 near-infrared (1.49 to 2.4 microns) spectra of high quality, including 4 spectra of objects never observed before. We search for the presence of features due to ices, particularly water ice. Eris is the only object showing deep methane ice absorption bands. The spectra of 4 objects are featureless, and 6 others show clearly the presence of water ice. For 7 objects, the detections are more ambiguous, but absorption bands could be embedded in the noise. The 3 remaining spectra are too noisy to draw any reliable conclusion. The possible amount of water ice on each object's surface has been computed. The analysis shows that some objects present strong compositional heterogeneities over the surface (e.g. Chariklo), while some others are completely homogeneous (e.g. Quaoar).  相似文献   

5.
BVRI photometry of 107 TNOs and Centaurs establishes the range of spectral gradients to be between –5 to 55%/100 nm (with one exception). A cluster of very red Cubewanos is firmly identified in orbits of low inclination and eccentricity beyond 40 AU from the Sun. Further correlations between surface colours and dynamical parameters (inclination and perihelion distance) are suggested for Cubewanos and scattered disk objects, but lack complete confidence for their reality. Plutinos and Centaurs do not show any clear correlation between surface colours and orbital parameters. We present in this paper 12 spectra obtained in the visible region and nine of them for which we obtained also near infrared spectra up to 2.4 microns. A few other objects have been observed, but the data are still under reduction and analysis. The principal reported results obtained are: (i) a wide range of visible slopes; (ii) evidence for surface variations on 2001 PT13; and (iii) possible detection of few percent of water ice (1999 TC36}, 2000 EB173, 1999 DE9, 2001 PT13, 2000 QC243, 1998 SG35).  相似文献   

6.
Summary. The trans-neptunian objects (TNOs) constitute a new class of solar system object that was discovered only recently to exist beyond the orbit of Neptune. About 400 trans-neptunian objects have been detected over the past nine years and more than ten new objects are being discovered every month. All of the TNOs known to date fit into three dynamical classes: the classical, the resonant and the scattered objects. The total mass of the TNOs currently orbiting the Sun is estimated from the observed luminosity distribution to be of the order of 10–20% of the Earth's mass. However, theoretical investigations of the formation and evolution of the trans-neptunian belt into its currently observed shape suggest that it was much more massive in the past. The physical characterisation of TNOs starts to reveal some of the basic properties of these objects, such as size, shape and rotation and provides a first glance into the diversity of their surfaces. TNOs cover a very diverse range of colours, possibly reflecting different surface compositions. First evidence for the presence of water ice was found in a spectrum of one TNO while others do not show the characteristic absorption bands. The TNOs are now regarded as the likely source of some short-period comets. Owing to giant-planet and collisional perturbations, some TNOs may evolve into Centaurs, i.e. objects orbiting the Sun in the region between Jupiter and Neptune, which are further perturbed to become Jupiter-family short-period comets. Together with smaller debris generated by collisional shattering, the TNOs might represent a belt that has evolved from a more massive circumstellar disc into its present structure. Received 15 May 2001 / Published online 5 October 2001  相似文献   

7.
We present observations of thermal emission from fifteen transneptunian objects (TNOs) made using the Spitzer Space Telescope. Thirteen of the targets are members of the Classical population: six dynamically hot Classicals, five dynamically cold Classicals, and two dynamically cold inner Classical Kuiper belt objects (KBOs). We fit our observations using thermal models to determine the sizes and albedos of our targets finding that the cold Classical KBOs have distinctly higher visual albedos than the hot Classicals and other TNO dynamical classes. The cold Classicals are known to be distinct from other TNOs in terms of their color distribution, size distribution, and binarity fraction. The Classical objects in our sample all have red colors yet they show a diversity of albedos which suggests that there is not a simple relationship between albedo and color. As a consequence of high albedos, the mass estimate of the cold Classical Kuiper belt is reduced from approximately 0.01 M to approximately 0.001 M. Our results also increase significantly the sample of small Classical KBOs with known albedos and sizes from 21 to 32 such objects.  相似文献   

8.
Dotto  E.  Barucci  M. A.  de Bergh  C. 《Earth, Moon, and Planets》2003,92(1-4):157-167
Centaurs are widely believed to come from the Edgeworth-Kuiper belt, located beyond the orbit of Neptune. From here they can be injected into the inner part of the Solar System through planetary perturbations or mutual collisions. Due to their origin and dynamical evolution, Centaurs are supposed to constitute a transition population of objects from the large reservoir of Trans-Neptunian Objects (TNOs) to the active bodies of the inner Solar System. On the basis of the present knowledge of the physical properties of Centaurs and TNOs a similarity between the two populations appears evident. This is the strongest observational constraint supporting the theory of common origin.  相似文献   

9.
We present here the latest BV, VR, and RI color measurements obtained with the CFH12K mosaic camera of the 3.6-m Canada-France-Hawaii Telescope (CFHT). This work is the latest extension of the Meudon Multicolor Survey (2MS) and extends the total number of Centaurs and trans-neptunian objects (TNOs) in the dataset to 71. With this large and homogeneous dataset, we performed relevant statistical analyses to search for correlations with physical and orbital parameters and interrelations with related populations (cometary nuclei and irregular satellites). With a larger dataset, we confirm the correlations found for the Classical TNOs in our previous survey: some colors are significantly correlated with perihelion distance and inclination. The only exception is with the eccentricity. However, results strongly depend on which objects are considered Classicals, and with a dynamically more restricted definition these correlations are no longer present. We also find that strongly significant trends with orbital parameters are not detected for Centaurs, Plutinos or scattered disk objects (SDOs). We also make for the first time reliable statistical comparison between TNOs and related populations (e.g., Centaurs, irregular satellites, short period comets—i.e., SPCs). We find that (1) the colors of SPCs do not match either their TNO or Centaur precursors, and this suggests that some process modifies the surface of SPCs at entry into the inner Solar System. The only exception concerns colors of SDOs from which we could statistically assess that SPCs and SDOs could be drawn from a same single parent distribution. (2) Not surprisingly, Centaurs are compatible with each of the Edgeworth-Kuiper belt dynamical groups at a highly significant level except with the SDOs. (3) Centaurs' colors still present a strong dichotomy between a neutral/slightly red group (e.g., Chiron) and a very red group (e.g., Pholus). (4) The irregular satellite population is not compatible with any of the Centaur, Plutino or Classical populations; however, the similarity of their color properties with SDOs suggests that both groups can be extracted from the same parent distribution. However, due to the small number of Centaurs and SDOs these conclusions cannot be taken as definitive.  相似文献   

10.
Transneptunian objects (TNOs) orbit beyond Neptune and do offer important clues about the formation of our solar system. Although observations have been increasing the number of discovered TNOs and improving their orbital elements, very little is known about elementary physical properties such as sizes, albedos and compositions. Due to TNOs large distances (>40 AU) and observational limitations, reliable physical information can be obtained only from brighter objects (supposedly larger bodies). According to size and albedo measurements available, it is evident the traditionally assumed albedo p=0.04 cannot hold for all TNOs, especially those with approximately absolute magnitudes H?5.5. That is, the largest TNOs possess higher albedos (generally >0.04) that strongly appear to increase as a function of size. Using a compilation of published data, we derived empirical relations which can provide estimations of diameters and albedos as a function of absolute magnitude. Calculations result in more accurate size/albedo estimations for TNOs with H?5.5 than just assuming p=0.04. Nevertheless, considering low statistics, the value p=0.04 sounds still convenient for H>5.5 non-binary TNOs as a group. We also discuss about physical processes (e.g., collisions, intrinsic activity and the presence of tenuous atmospheres) responsible for the increase of albedo among large bodies. Currently, all big TNOs (>700 km) would be capable to sustain thin atmospheres or icy frosts composed of CH4, CO or N2 even for body bulk densities as low as 0.5 g cm−3. A size-dependent albedo has important consequences for the TNOs size distribution, cumulative luminosity function and total mass estimations. According to our analysis, the latter can be reduced up to 50% if higher albedos are common among large bodies.Lastly, by analyzing orbital properties of classical TNOs (), we confirm that cold and hot classical TNOs have different concentration of large bodies. For both populations, distinct absolute magnitude distributions are maximized for an inclination threshold equal to 4.5° at >99.63% confidence level. Furthermore, more massive classical bodies are anomalously present at , a result statistically significant and apparently not caused by observational biases. This feature would provide a new constraint for transneptunian belt formation models.  相似文献   

11.
We present near-IR (2.2-2.4 μm) reflectance and transmittance spectra of frozen (16 and 77 K) methanol (CH3OH) and water-methanol (1:1) mixtures before and after irradiation with 30 keV He+ and 200 keV H+ ions. Spectra of other simple hydrocarbons (CH4, C2H2, C2H4, C2H6) and CO have also been obtained both to help in the identification of the new molecules formed after ion irradiation of methanol-rich ices, and to get insight into the question of the presence of simple frozen hydrocarbons on the surface of some objects in the outer Solar System. The results confirm what obtained by studies performed in different spectral ranges, namely the ion-induced formation of CO and CH4, and, for the first time, evidence a strong decrease of the intensity of the methanol band at about 2.34 μm in comparison with that at 2.27 μm. The results are discussed in view of their relevance for icy objects in the Solar System (namely comets, Centaurs, and Kuiper belt objects) where CH3OH has been observed or suggested to be present.  相似文献   

12.
Henry B. Throop 《Icarus》2011,212(2):885-895
The origin of complex organic molecules such as amino acids and their precursors found in meteorites and comets is unknown. Previous studies have accounted for the complex organic inventory of the Solar System by aqueous chemistry on warm meteoritic parent bodies, or by accretion of organics formed in the interstellar medium. This paper proposes a third possibility: that complex organics were created in situ by ultraviolet light from nearby O/B stars irradiating ices already in the Sun’s protoplanetary disk. If the Sun was born in a dense cluster near UV-bright stars, the flux hitting the disk from external stars could be many orders of magnitude higher than that from the Sun alone. Such photolysis of ices in the laboratory can rapidly produce amino acid precursors and other complex organic molecules. I present a simple model coupling grain growth and UV exposure in a young circumstellar disk. It is shown that the production may be sufficient to create the Solar System’s entire complex organic inventory within 106 yr. Subsequent aqueous alteration on meteoritic parent bodies is not ruled out.  相似文献   

13.
W.M. Grundy 《Icarus》2009,199(2):560-563
The extremely red colors of some transneptunian objects and Centaurs are not seen among the Jupiter family comets which supposedly derive from them. Could this mismatch result from sublimation loss of colorless ice? Radiative transfer models show that mixtures of volatile ice and non-volatile organics could be extremely red, but become progressively darker and less red as the ice sublimates away.  相似文献   

14.
We perform an optical characterization of UV laser ablated silicates (olivine, pyroxene), starting from their reflectance spectra in the 0.3-2.5 μm spectral range. The goal is to provide useful tools to model space weathering effects on surfaces of asteroids and TNOs (trans-neptunian objects). We determine that the reddening and darkening spectral trend is compatible with the Hapke's space weathering model, using the optical constants of metallic iron in a silicate matrix. This result is supported by new magnetic susceptibility measurements on laser ablated orthopyroxene. We also investigate the potential contribution of formation of amorphous silicates in the process. Applying our results to silicate-rich surfaces in the Solar System, we investigate the possibility of a weathered olivine component on the surface of Centaur 5145 Pholus. Inclusion of this component slightly decreases the amount of complex organics and water ice from those previously estimated. Thus, the current Pholus spectrum is consistent with the presence of either unweathered or weathered olivine, or potentially both materials.  相似文献   

15.
We report 43 new visible colors of Centaurs and TNOs, obtained at NTT and VLT telescopes under the “ESO large program on physical properties of Centaurs and TNOs.” Merging these new measurements with those obtained during the first part of the program (Boehnhardt et al., 2002, Astron. Astrophys. 395, 297-303) and the “Meudon Multicolor Survey” (Doressoundiram et al., 2002, Astron. J. 124, 2279-2296) we have a unique dataset of 109 objects. We checked for correlations and trends between colors, physical and orbital parameters, carrying out an analysis based on Monte Carlo simulation to account for observational error bars. Centaurs show no evidence for correlation between VR vs. RI colors which raises the hypothesis that more than one single coloring process might be acting on their surfaces. Classical objects seem to be composed of two different color populations: objects with i<4.5° display only red colors while those with i>4.5° display the whole range of colors from blue to very red. The possibility that the low inclined population is misguiding global conclusions is analyzed. Classical objects also show a stronger color-perihelion correlation for intrinsically brighter objects, corresponding to critical estimated sizes of different formation/evolutionary histories. Scattered disk objects show color resemblances with the classical objects at i>12°, hence surface reflectivities resemblances, pointing to a common origin. No color-aphelion trend is found for SDOs, as expected from the intense irradiation by galactic cosmic-rays beyond the solar wind termination shock. Plutinos show a color-absolute magnitude trend, in which all the intrinsically faintest objects are blue. We see many red Plutinos in highly inclined and highly eccentric orbits, that should have originated in a primordial inner disk under Gomes (2003, Icarus 161, 404-418) migration scenario. This seems to invalidate the assumption that objects originated in this inner disk are mainly blue. Finally, we also find six candidates for light-curve studies: four objects (1998 WU31, 1999 OE4, 1999 OX3, and 2001 KP77) present significant short term R-magnitude variability, and two objects (1999 XX143 and 2000 GP183) evidence possible color variations with rotation.  相似文献   

16.
P. Lamy  I. Toth 《Icarus》2009,201(2):674-713
We present new color results of cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 51 cometary nuclei, 44 ecliptic comets (ECs) and 7 nearly-isotropic comets (NICs) using the nomenclature of Levison [Levison, H.F., 1996. In: Rettig, T.W., Hahn, J.M. (Eds.), Completing the Inventory of the Solar System. In: ASP Conf. Ser., vol. 107, pp. 173-192]. We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our compilation of colors of 232 outer Solar System objects—separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits (respectively CKBO-LI and CKBO-HI), resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs—of 12 candidate dead comets, and of 85 Trojans. We perform a systematic analysis of all color distributions, and conclude by synthesizing the implications of the dynamical evolution and of the colors for the origin of the minor bodies of the Solar System. We find that the color distributions are remarkably consistent with the scenarios of the formation of TNOs by Gomes [Gomes, R.S., 2003. Icarus 161, 404-418] generalized by the “Nice” model [Levison, H.F., Morbidelli, A., VanLaerhoven, Ch., Gomes, R., Tsiganis, L., 2008. Icarus 196, 258-273], and of the Trojans by Morbidelli et al. [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. The color distributions of the Centaurs are globally similar to those of the CKBO-HI, the Plutinos and the SDOs. However the potential bimodality of their distributions allows to possibly distinguish two groups based on their (BR) index: Centaur I with (BR)>1.7 and Centaurs II with (BR)<1.4. Centaurs I could be composed of TNOs (prominently CKBO-LI) and ultra red objects from a yet unstudied family. Centaurs II could consist in a population of evolved objects which have already visited the inner Solar System, and which has been scattered back beyond Jupiter. The diversity of colors of the ECs, in particular the existence of very red objects, is consistent with an origin in the Kuiper belt. Candidate dead comets represent an ultimate state of evolution as they appear more evolved than the Trojans and Centaurs II.  相似文献   

17.
W.M. Grundy  K.S. Noll 《Icarus》2005,176(1):184-191
Discovery of trans-neptunian object (TNO) satellites and determination of their orbits has recently enabled estimation of the size and albedo of several small TNOs, extending the size range of objects having known size and albedo down into the sub-100 km range. In this paper we compute albedo and size estimates or limits for 20 TNOs, using a consistent method for all binary objects and a consistent method for all objects having reported thermal fluxes. As is true for larger TNOs, the small objects show a remarkable diversity of albedos. Although the sample is limited, there do not yet appear to be any trends relating albedo to other observable properties or to dynamical class, with the possible exception of inclination. The observed albedo diversity of TNOs has important implications for computing the size-frequency distribution, the mass, and other global properties of the Kuiper belt derived from observations of objects' apparent magnitudes and may also point the way toward an improved compositional taxonomy based on albedo in addition to color.  相似文献   

18.
We study radiation-induced amorphization of crystalline ice, analyzing the results of three decades of experiments with a variety of projectiles, irradiation energy, and ice temperature, finding a similar trend of increasing resistance of amorphization with temperature and inconsistencies in results from different laboratories. We discuss the temperature dependence of amorphization in terms of the ‘thermal spike’ model. We then discuss the common use of the 1.65 μm infrared absorption band of water as a measure of degree of crystallinity, an increasingly common procedure to analyze remote sensing data of astronomical icy bodies. The discussion is based on new, high quality near-infrared reflectance absorption spectra measured between 1.4 and 2.2 μm for amorphous and crystalline ices irradiated with 225 keV protons at 80 K. We found that, after irradiation with 1015 protons cm−2, crystalline ice films thinner than the ion range become fully amorphous, and that the infrared absorption spectra show no significant changes upon further irradiation. The complete amorphization suggests that crystalline ice observed in the outer Solar System, including trans-neptunian objects, may results from heat from internal sources or from the impact of icy meteorites or comets.  相似文献   

19.
O. Gomis  G. Strazzulla 《Icarus》2005,177(2):570-576
In this work we report on new experiments of ion irradiation of water ice deposited on top of solid carbonaceous materials to study the production of CO2 at the interface ice/refractory material and discuss the possibility that this mechanism accounts for the quantity of CO2 ice detected on the surfaces of the Galilean satellites. The used experimental technique has been in situ infrared spectroscopy. We have irradiated thin films of H2O frost on carbonaceous layers with 200 keV of He+ and Ar+, and 30 keV of He+ at 16 and 80 K. The used carbonaceous layers have been asphaltite, a natural bitumen, and solid organic residues obtained by irradiation of frozen benzene. In both cases the results show that CO2 is produced very efficiently after irradiation obtaining a maximum quantity of the order of . These results are, also quantitatively similar, to those recently obtained for water ice deposited on amorphous carbon films [Mennella, V., Palumbo, M.E., Baratta, G.A., 2004. Formation of CO and CO2 molecules by ion irradiation of water ice covered hydrogenated carbon grains. Astrophys. J. 615, 1073-1080]. Thus we suggest that, whatever is the carbonaceous residue, CO2 will be produced efficiently by the studied process. These results have interest in the context of the surfaces of the icy Galilean satellites in which CO2 has been detected mainly trapped in the non-ice material, not in the pure water ice. We suggest that radiolysis of mixtures of water ice and refractory carbonaceous materials is the primary formation mechanism responsible for the CO2 formation on the surfaces of the Galilean satellites.  相似文献   

20.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号