首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Oort Cloud, the Kuiper belt and the Scattered Disk are dynamically distinct populations of small bodies evolving in the outer regions of the Solar System. Whereas their collisional activity is now quiet, gravitational interactions with giant planets may have shaped these populations both dynamically and collisionally during their formation. Using a hybrid approach [Charnoz, S., Morbidelli, A., 2003. Icarus 166, 141-166], the present paper tries to couple the primordial collisional and dynamical evolution of these three populations in a self-consistent way. A critical parameter is the primordial size-distribution. We show that the initial planetesimal size distribution that allows an effective mass depletion of the Kuiper belt by collisional grinding, would decimate also the population of comet-size bodies that end in the Oort Cloud and, in particular, in the Scattered Disk. As a consequence, the Oort Cloud and the Scattered Disk would be too anemic, by a factor 20 to 100, relative to the estimates achieved from the observation of the fluxes of long period and Jupiter family comets, respectively. For these two reservoirs to have a sufficient number of comets, the initial size distribution in the planetesimal disk had to be such that the mass depletion by collisional erosion of the Kuiper belt was negligible. Consequently the current mass deficit of the Kuiper belt needs to be explained by dynamical mechanisms.  相似文献   

2.
We report 43 new visible colors of Centaurs and TNOs, obtained at NTT and VLT telescopes under the “ESO large program on physical properties of Centaurs and TNOs.” Merging these new measurements with those obtained during the first part of the program (Boehnhardt et al., 2002, Astron. Astrophys. 395, 297-303) and the “Meudon Multicolor Survey” (Doressoundiram et al., 2002, Astron. J. 124, 2279-2296) we have a unique dataset of 109 objects. We checked for correlations and trends between colors, physical and orbital parameters, carrying out an analysis based on Monte Carlo simulation to account for observational error bars. Centaurs show no evidence for correlation between VR vs. RI colors which raises the hypothesis that more than one single coloring process might be acting on their surfaces. Classical objects seem to be composed of two different color populations: objects with i<4.5° display only red colors while those with i>4.5° display the whole range of colors from blue to very red. The possibility that the low inclined population is misguiding global conclusions is analyzed. Classical objects also show a stronger color-perihelion correlation for intrinsically brighter objects, corresponding to critical estimated sizes of different formation/evolutionary histories. Scattered disk objects show color resemblances with the classical objects at i>12°, hence surface reflectivities resemblances, pointing to a common origin. No color-aphelion trend is found for SDOs, as expected from the intense irradiation by galactic cosmic-rays beyond the solar wind termination shock. Plutinos show a color-absolute magnitude trend, in which all the intrinsically faintest objects are blue. We see many red Plutinos in highly inclined and highly eccentric orbits, that should have originated in a primordial inner disk under Gomes (2003, Icarus 161, 404-418) migration scenario. This seems to invalidate the assumption that objects originated in this inner disk are mainly blue. Finally, we also find six candidates for light-curve studies: four objects (1998 WU31, 1999 OE4, 1999 OX3, and 2001 KP77) present significant short term R-magnitude variability, and two objects (1999 XX143 and 2000 GP183) evidence possible color variations with rotation.  相似文献   

3.
We numerically model the evolution of dust in a protoplanetary disk using a two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a disk comprising 1% dust by mass in the presence of an embedded planet for two different disk configurations: a small, minimum mass solar nebular (MMSN) disk and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the grain size and planetary mass to see how they effect the resulting disk structure. We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a different appearance depending on the grain size and that such differences will be detectable in the millimetre domain with ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may facilitate the growth of planetesimals in this high density region.  相似文献   

4.
Chi Yuan  Patrick Cassen 《Icarus》1985,64(3):435-447
The gravitational collapse of molecular clouds or cloud cores is expected to lead to the formation of stars that begin their lives in a state of rapid rotation. It is known that, in at least some specific cases, rapidly rotating, slf-gravitating bodies are subject to instabilities that cause them to assume ellipsoidal shapes. In this paper we investigate the consequences of such instabilities on the angular momentum evolution of a star in the process of formation from a collapsing cloud, and surrounded by a protostellar disk, with a view toward applications to the formation of the Solar System. We use a specific model of star formation to demonstrate the possibility that such a star would become unstable, that the resulting distortion of the star would generate spiral density waves in the circumstellar disk, and that the torque associated with these waves would regulate the angular momentum of the star as it feeds angular momentum to the disk. We conclude that the angular momentum so transported to the disk would not spread the disk to, say, Solar System dimensions, by the action of the spiral density waves alone. However, a viscous disk could effectively extract stellar angular momentum and attain Solar System size. Our results also indicate that viscous disks could feed mass and angular momentum to a growing protostar in such a manner that distortions of the star would occur before gravitational torques could balance the influx of angular momentum. In other situations (in which the viscosity was small), a gap could be cleared between the disk and star.  相似文献   

5.
We suggest a new method for predicting the phenomena observed in Jovian system of Galilean satellites that takes into account the planet’s phase effect. The method allows one to determine the geocentric times of the contacts of the satellite and its shadow with the illuminated part of the planet’s visible disk that occur near its inferior geocentric and inferior heliocentric conjunctions, respectively. The calculation is performed in the orthographic approximation for the geometric center of the satellite and its shadow by taking into account the curvature of the satellite’s orbit and the visible flattening of Jovian disk. The correction for the phase to the satellite’s contact time is determined from the phase shift of the center of the planet’s disk.  相似文献   

6.
The Trans-Neptunian region is yet another example of a collisional system of small bodies in the Solar System. In the last decade the number of TNOs with reliable orbital elements is steadily increasing and even if it is still premature to compare models with observations, we can start to have some idea of the orbital structure and magnitude distribution, so that some loose constraints may be set on the critical parameters that affect collisional evolution. With this aim we have developed a model for the collisional evolution of the Trans-Neptunian region by dividing it into three main different populations, corresponding to the dynamical classification proposed by Gladman et al. [2001.The structure of the Kuiper Belt: size distribution and radial extent. Astrophys. J. 122, 1051] (Resonant region, Classical Belt and Scattered Disk). A multi-zone collisional model is developed, in which each zone can collisionally interact with each other. The model takes into account the known physics of the fragmentation of icy/rocky bodies at the typical relative velocities of TNOs, according to velocity distributions corresponding to each evolving zone. The dependence of the evolution of the considered populations on physically critical collisional parameters is investigated and the corresponding results are presented, including estimates of the abundance of gravitational aggregates in the studied populations.  相似文献   

7.
Energetic outflows provide a dramatic accompaniment to accretion disks in all stages of star formation. The low extinction toward Classical T Tauri stars offers an opportunity to probe the star-disk interface region to search for the launch site and acceleration region of accretion-driven winds. This search is complicated by the fact that the dominant sources of emission in the optical and ultraviolet are the funnel flows and accretion shocks associated with magnetospheric accretion. Thus the quest for inner wind diagnostics requires disentangling accretion and outflow processes from the same line profile. We discuss two tracers of a high velocity inner wind in stars with high disk accretion rates. One, a hot component, is traced by helium emission and must arise very close to the star. A second, cooler component, is traced by blueshifted absorption in strong resonance lines and arises further from the star, but still within about ten stellar radii. We present evidence that the character of both magnetospheric accretion and the inner wind may differ among stars with high and low disk accretion rates.  相似文献   

8.
The theory of viscous accretion disks developed by Lynden-Bell and Pringle has been applied to the evolution of the primitive solar nebula. The additional physical input needed to determine the structure of the disk is described. A series of calculations was carried out using a steady flow approximation to explore the effects on the disk properties of variations in such parameters as the angular momentum and accretion rate of the infalling material from a collapsing interstellar cloud fragment. The more detailed evolutionary calculations involved five cases with various combinations of parameters. It was concluded that the late stages of evolution of the disks would be dominated by the effects of mass loss from the expansion of a hot disk corona into space, and the effects of this were included in the evolutionary calculations. A new theory of comet formation is formulated upon these results. The most important result is the conclusion, which appears to be inescapable, that the primitive solar accretion disk was repeatedly unstable against axisymmetric perturbations, in which rings would form and collapse upon themselves, with the subsequent formation of giant gaseous protoplanets.  相似文献   

9.
Be/X-ray binaries are systems formed by a massive Be star and a magnetized neutron star, usually in an eccentric orbit. The Be star has strong equatorial winds occasionally forming a circumstellar disk. When the neutron star intersects the disk the accretion rate dramatically increases and a transient accretion disk can be formed around the compact object. This disk can last longer than a single orbit in the case of major outbursts. If the disk rotates faster than the neutron star, the Cheng-Ruderman mechanism can produce a current of relativistic protons that would impact onto the disk surface, producing gamma-rays from neutral pion decays and initiating electromagnetic cascades inside the disk. In this paper we present calculations of the evolution of the disk parameters during both major and minor X-ray events, and we discuss the generation of gamma-ray emission at different energies within a variety of models that include both screened and unscreened disks.  相似文献   

10.
The UBVRI photometry of the eclipsing symbiotic star CI Cyg in 1996–1999 is presented. The system continued to be in quiescence during this period. The shape of the minima in its light curves attributable to eclipses of the compact star with an accretion disk by the red giant is the same as that in 1988–1995. An analysis of our observations and those of other researchers, which span a total of 27 years, has revealed a cyclic variability of the out-of-eclipse photometric properties of CI Cyg on a time scale of about 10.7±0.6 years with the clearest manifestation in the U-B color. The fact that the system’s out-of-eclipse light variations in U, on the one hand, and in BVRI, on the other, occur in antiphase suggests that the titanium red giant plays a significant role in this cyclic process. However, with its contribution to the total U flux being no larger than 10%, the observed light fluctuations of CI Cyg in this band must be caused not only by variability of the giant but also by light variations of the hot component. The presence of a 10.7-year cycle in the system’s active and quiescent states suggests that some precession phenomenon is responsible for it. Precession of the accretion disk, which would cause both the observed brightness of the primary component and the effect of its radiation on the titanium red giant to vary, can serve as an example of such a phenomenon.  相似文献   

11.
We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsuda would radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.  相似文献   

12.
Using the GADGET-2 code modified by us, we have computed hydrodynamic models of a protoplanetary disk perturbed by a low-mass companion. We have considered the cases of circular and eccentric orbits coplanar with the disk and inclined relative to its midplane. During our simulations we computed the column density of test particles on the line of sight between the central star and observer. On this basis we computed the column density of circumstellar dust by assuming the dust and gas to be well mixed with a mass ratio of 1: 100. To study the influence of the disk orientation relative to the observer on the interstellar extinction, we performed our computations for four inclinations of the line of sight to the disk plane and eight azimuthal directions. The column densities in the circumstellar disk of the central star and the circumbinary disk were computed separately. Our computations have shown that periodic column density oscillations can arise in both inner and circumbinary disks. The amplitude and shape of these oscillations depend on the system’s parameters (the orbital eccentricity and inclination, the component mass ratio) and its orientation in space. The results of our simulations can be used to explain the cyclic brightness variations of young UX Ori stars.  相似文献   

13.
The gas giant planets’ formation processes in a viscously evolved protoplanetary disk are studied in the context of the core accretion model. In this paper, we follow the entire formation process of the core accretion model (the three stages). We find that the gas giant planets’ final masses and formation regions have strong dependence on the molecular cloud core’s properties (angular velocity \(\omega \) and mass \(M _{c d}\)) and the \(\alpha _{ \mathit{min} }\) parameter. We find and build the relationship between gas giant planets’ properties and molecular cloud core’s properties. In contrast to the previous works, we find that the formation process can be finished within the protoplanetary disk’s lifetime (4×106 yr) in our disk model. This is because the mass influx produced by the molecular cloud core can provide enough material to the protoplanetary disk. We also find that the gas giant planets’ final masses increase generally with the viscosity coefficient \(\alpha \). This is because most of the gas giant planet’s mass is captured during the rapid gas accretion phase (the third stage of the core accretion model), and furthermore the accretion of gas in this phase is dominated by the “gap limiting case”. And our numerical results can also be compared with the observed data of exoplanet systems.  相似文献   

14.
Results of spectroscopic and photometric studies for the locally isolated lenticular galaxy NGC 4124 are presented. A model of the mass distribution consistent with photometric data has been constructed on the basis of a kinematic analysis. In this model, the halo mass within the optical radius is almost half the diskmass. The disk is shown to be in a dynamical state close to amarginally stable one. This rules out dynamical disk heating for the galaxy through a strong external action or a merger with a massive system. However, the presence of a gaseous disk inclined to the main plane of the galaxy in the central kiloparsec region suggests probable cannibalization of a small satellite that also produced a late starburst in the central region. This is confirmed by the younger mean age (~2 Gyr) of the stellar population in the galaxy’s central region than the disk age (5–7 Gyr).  相似文献   

15.
The magnitude distribution of the trans-Neptunian bodies composed of the Kuiper Belt Objects (KBOs) and Scattered Disk Objects (SDOs) is determined for absolute magnitudes H?7, using maximum likelihood estimation methods. This is translated into a corresponding size distribution. This gave a differential size index of q=3.966±0.15 for KBOs and q=3.016±0.32 for SDOs. It was found that these two distributions were statistically different. The KBOs were further split into classical KBOs and Plutinos which had indices of q=4.074±0.18 and q=3.301±0.37, respectively. There was no statistical evidence that these are different populations. The classical KBOs were further split and examined for four different semi-major axis ranges and it was found that there was moderate evidence that the entire sample was not well represented by one index. The distribution indices of the SDOs were compared with the distributions of short period comets and found to be similar. It is likely that the scattered disk population is the source of the short period comets.  相似文献   

16.
From the UCSD OSO-7 X-ray experiment data, we have identified 54 X-ray bursts with 5.1–6.6 keV flux greater than 103 photon cm?2 keV?1 which were not accompanied by visible Hα flare on the solar disk. By studying OSO-5 X-ray spectroheliograms, Hα activity at the limb and the emergence and disappearance of sunspot groups at the limb, we found 17 active centers as likely seats of the X-ray bursts beyond the limb. We present the analysis of 37 X-ray bursts and their physical parameters. We compare our results with those published by Datlowe et al. (1974a, b) for disk events. The distributions of maximum temperature, maximum emission measure, and characteristic cooling time of the over-the-limb events do not significantly differ from those of disk events. We show that of conduction and radiation, the former is the dominant cooling mechanism for the hot flare plasma. Since the disk and over-the-limb bursts are similar, we conclude that the scale height for X-ray emission in the 5–10 keV range is large and is consistent with that of Catalano and Van Allen (1973), 11000 km, for primarily 1–3 keV emission. Twenty-five or about 2/3 of the over-the-limb events had a non-thermal component. The distribution of peak 20 keV flux is not significantly different from that of disk events. However, the spectral index at the time of maximum flux is significantly different for events over the limb and for events near the center of the disk; the spectral index for over-the-limb events is larger by about δγ = 3/4. If hard X-ray emission came only from localized sources low in the chromosphere we would expect that hard X-ray emission, would be occulted over the limb; on the contrary, the observation show that the fraction of soft X-ray bursts which have a nonthermal component is the same on and off of the disk. Thus hard X-ray emission over extended regions is indicated.  相似文献   

17.
We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.  相似文献   

18.
The structure of the corotating region, which forms an inner portion of a stellar magnetosphere, is reconsidered in a quasi-neutral case by taking into account the inertial effects of electrons as well as that of ions up to the first order in their mass ratio (δ=m?/m+). It is emphasized first that the magnetosphere is not globally equipotential even in the frame rotating with a central star (i.e. ?#0, where ? is the ‘non-Backus’ potential) due at least to the inertial effects of plasma particles. However, it is shown that the condition ?=0 is asymptotically recovered in the corotating region owing to the presence of the drift current which can be taken into account only when δ is not entirely neglected. This fact suggests that the deviation of the plasma motion in the outer magnetosphere from the corotation can be attributed to the non-zero ?. A globally self-consistent solution is obtained under this condition (?=0). In contrast with the solutions in the ‘force-free’ and the ‘mass-less-electron’ approximations, this solution has a disk structure in the corotation zone in which the plasma and the current density are concentrated to a thin disk near the magnetic equator. Owing to this sheet current in the disk the lines of force of the stellar magnetic field are modified to form a very elongated shape (the magnetodisk) if the plasma β-value is fairly large. Such a disk structure seems to be a common feature in the high β inner magnetospheres of various types of stars.  相似文献   

19.
We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only \({\sim }1\,\%\) although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease allowing period ratios to increase to become more distant from resonances as the system approached its final state in the inner regions of the protoplanetary disk.  相似文献   

20.
Using 1.55cm observations of the Earth made by the Electrically Scanned Microwave Radiometer experiment on Nimbus 5, the appearance of the Earth from Venus is simulated. A single antenna unable to resolve the Earth's disk would give a time averaged disk temperature of 183K. In one rotation, the disk temperature would vary from 194K to 172K. During the 1973 inferior conjunction, a radio telescope with 1 arcsec resolution would resolve most of the major surface features of the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号