首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Details are presented of an improved technique to use atmospheric absorption of magnetically reflecting solar wind electrons to constrain neutral mass densities in the nightside martian upper thermosphere. The helical motion of electrons on converging magnetic field lines, through an extended neutral atmosphere, is modeled to enable prediction of loss cone pitch angle distributions measured by the Magnetometer/Electron Reflectometer (MAG/ER) experiment on Mars Global Surveyor at 400 km altitude. Over the small fraction of Mars' southern hemisphere (∼2.5%) where the permanent crustal magnetic fields are both open to the solar wind and sufficiently strong as to dominate the variable induced martian magnetotail field, spherical harmonic expansions of the crustal fields are used to prescribe the magnetic field along the electron's path, allowing least-squares fitting of measured loss cones, in order to solve for parameters describing the vertical neutral atmospheric mass density profile from 160 to 230 km. Results are presented of mass densities in the southern hemisphere at 2 a.m. LST at the mean altitude of greatest sensitivity, 180 km, continuously over four martian years. Seasonal variability in densities is largely explained by orbital and latitudinal changes in dayside insolation that impacts the nightside through the resulting thermospheric circulation. However, the physical processes behind repeatable rapid, late autumnal cooling at mid-latitudes and near-aphelion warming at equatorial latitudes is not fully clear. Southern winter polar warming is generally weak or nonexistent over several Mars years, in basic agreement with MGS and MRO accelerometer observations. The puzzling response of mid-latitude densities from 160° to 200° E to the 2001 global dust storm suggests unanticipated localized nightside upper thermospheric lateral and vertical circulation patterns may accompany such storms. The downturn of the 11-year cycle of solar EUV flux is likely responsible for lower aphelion densities in 2004 and 2006 (Mars years 27 and 28).  相似文献   

2.
Without the shielding of a strong intrinsic magnetic field, the martian atmosphere directly interacts with the impacting solar wind. The neutral constituents of the atmospheric corona can be ionized, and then picked up and accelerated by the magnetic field and convection electric field in the solar wind. A significant fraction of pickup ions escape Mars’ gravitational pull and are lost to space. This non-thermal escape process of heavy species is an important mechanism responsible for atmospheric erosion. While there is a perception that the martian magnetic anomalies are significant for the ionospheric density distribution and the bow shock standoff location, little is known about the quantitative influence of the martian crustal magnetic field on the global distribution of escaping pickup ions. In this paper, we apply a newly developed Monte Carlo ion transport model to resolve the crustal field effect on the pickup oxygen ion distribution around Mars. The background magnetic and electric fields, in which test particles are followed, are calculated using an independent three-dimensional multispecies MHD model. The effects of the crustal magnetic field on particle escape are quantified by varying the crustal field orientation in the model setup and comparing the corresponding test particle simulation results. The comparison is made by turning on or off the crustal field or changing the local time of the strongest field from the dayside to the dawnside. It is found that without the protection of the crustal magnetic field, the total amount of atmospheric escape through the tail region would be enhanced by more than a factor of two. It is shown that the crustal magnetic field not only regionally deflects the solar wind around the martian atmosphere, but also has an important global effect on atmospheric erosion and thus on long-term atmospheric evolution.  相似文献   

3.
We apply improved kinetic modeling of electron transport in the martian thermosphere to fit pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER), together with appropriate filtering, binning, averaging and error correction techniques, to create the most reliable ER global map to date of crustal magnetic field magnitude at 185 km altitude, with twice the spatial resolution and considerably higher sensitivity to crustal fields than global maps of magnetic field components produced with MAG data alone. This map compares favorably to sparsely sampled dayside MAG data taken at similar altitudes, insofar as a direct comparison is meaningful. Using this map, we present two case studies. The first compares the magnetic signatures of two highland volcanoes, concluding that the comparatively greater thermal demagnetization at Syrtis Major compared with Tyrrhena Patera is likely due to a higher ratio of intruded to extruded magmas. The second uses the map along with topographic data to compare the magnetic signatures and crater retention ages of the demagnetized Hellas impact basin and magnetized Ladon impact basin. From this comparison, we determine that the martian global dynamo magnetic field went from substantial to very weak or nonexistent in the absolute model age time interval 4.15±0.05 to 4.07±0.05 Ga ago.  相似文献   

4.
Using more than five years of data from the magnetometer and electron reflectometer (MAG/ER) on Mars Global Surveyor (MGS), we derive the draping direction of the magnetic field above a given latitude band in the northern hemisphere. The draping direction varies on timescales associated with the orbital period of Mars and with the solar rotation period. We find that there is a strongly preferred draping direction when Mars is in one solar wind sector, but the opposite direction is not preferred as strongly for the other solar wind sector. This asymmetry occurs at or below the magnetic pileup boundary (MPB), is observed preferentially on field lines that connect to the collisional ionosphere, and is independent of planetary longitude. The observations could be explained by a hemispherical asymmetry in the access of field lines to the low-altitude ionosphere, or possibly from global modification of the low-altitude solar wind interaction by crustal magnetic fields. We show that the draping direction affects both the penetration of sheath plasma to 400 km altitudes on the martian dayside and the radial component of the magnetic field on the planetary night side.  相似文献   

5.
The Electron Spectrometer (ELS) instrument of the ASPERA-3 package on the Mars Express satellite has recorded photoelectron energy spectra up to apoapsis (∼10,000 km altitude). The characteristic photoelectron shape of the spectrum is sometimes seen well above the ionosphere in the evening sector across a wide range of near-equatorial latitudes. Two numerical models are used to analyze the characteristics of these high-altitude photoelectrons. The first is a global, multi-species MHD code that produces a 3-D representation of the magnetic field and bulk plasma parameters around Mars. It is used here to examine the possibility of magnetic connectivity between the high-altitude flanks of the martian ionosheath and the subsolar ionosphere. It is shown that some field lines in this region are draped interplanetary magnetic lines while others are open field lines (connected to both the IMF and the crustal magnetic field sources). The second model is a kinetic electron transport model that calculates the electron velocity space distribution along a selected, non-uniform, magnetic field line. It is used here to simulate the high-altitude ELS measurements. It is shown that the photoelectrons are essentially confined to the source cone, as governed by magnetic field inhomogeneity along the field line. Reasonable agreement is shown between the data and the model results, and a method is demonstrated for inferring properties of the local and photoelectron source region magnetic field from the ELS measurements. Specifically, the number of sectors in which photoelectrons are measured is a function of the magnetic field intensity ratio and the field's angle with respect to the detector plane. In addition, the sector of the photoelectron flux peak is a function of the magnetic field azimuthal angle in the detector plane.  相似文献   

6.
The Analyzer of Space Plasma and Energetic Atoms (ASPERA) on-board the Mars Express spacecraft (MEX) measured penetrating solar wind plasma and escaping/accelerated ionospheric plasma at very low altitudes (250 km) in the dayside subsolar region. This implies a direct exposure of the martian topside atmosphere to solar wind plasma forcing leading to energization of ionospheric plasma. The ion and electron energization and the ion outflow from Mars is surprisingly similar to that over the magnetized Earth. Narrow “monoenergetic” cold ion beams, ion beams with broad energy distributions, sharply peaked electron energy spectra, and bidirectional streaming electrons are particle features also observed near Mars. Energized martian ionospheric ions (O+, O+2, CO+2, etc.) flow in essentially the same direction as the external sheath flow. This suggests that the planetary ion energization couples directly to processes in the magnetosheath/solar wind. On the other hand, the beam-like distribution of the energized plasma implies more indirect energization processes like those near the Earth, i.e., energization in a magnetized environment by waves and/or parallel (to B) electric fields. The general conditions for martian plasma energization are, however, different from those in the Earth's magnetosphere. Mars has a weak intrinsic magnetic field and solar wind plasma may therefore penetrate deep into the dense ionospheric plasma. Local crustal magnetization, discovered by Acuña et al. [Acuña, M.J., Connerey, J., Ness, N., Lin, R., Mitchell, D., Carlsson, C., McFadden, J., Anderson, K., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P., 1999. Science 284, 790-793], provide some dayside shielding against the solar wind. On the other hand, multiple magnetic anomalies may also lead to “hot spots” facilitating ionospheric plasma energization. We discuss the ASPERA-3 findings of martian ionospheric ion energization and present evidences for two types of plasma energization processes responsible for the low- and mid-altitude plasma energization near Mars: magnetic field-aligned acceleration by parallel electric fields and plasma energization by low frequency waves.  相似文献   

7.
J.S. Halekas  D.A. Brain 《Icarus》2010,206(1):64-73
We present the results of the first systematic survey of current sheets encountered by Mars Global Surveyor in its ∼400 km mapping orbit. We utilize an automated procedure to identify over 10,000 current sheet crossings during the ∼8 year mapping mission. The majority of these lie on the nightside and in the polar regions, but we also observe over 1800 current sheets at solar zenith angle <60°. The distribution and orientation of current sheets and their dependence on solar wind drivers suggests that most magnetotail current sheets have a local induced magnetospheric origin caused by magnetic field draping. On the other hand, most current sheets observed on the day side likely result from solar wind discontinuities advected through the martian system. However, the clustering of low altitude dayside current sheet crossings around the perimeters of strongly magnetized crustal regions, and the smaller than expected rotations in the IMF draping direction, suggest that crustal magnetic fields may also play an indirect role in their formation. The apparent thicknesses of martian current sheets, and the characteristics of electrons observed in and around the current sheets, suggest one of two possibilities. Martian current sheets at low altitudes are either stationary, with thicknesses of a few hundred km and currents carried by low energy (<10 eV) electrons, or they move at tens of km/s, with thicknesses of a few thousand km and currents carried by ions.  相似文献   

8.
Mars Express (MEX) Analyser of Space Plasmas and Energetic Atoms (ASPERA-3) data is providing insights into atmospheric loss on Mars via the solar wind interaction. This process is influenced by both the interplanetary magnetic field (IMF) in the solar wind and by the magnetic ‘anomaly’ regions of the martian crust. We analyse observations from the ASPERA-3 Electron Spectrometer near to such crustal anomalies. We find that the electrons near remanent magnetic fields either increase in flux to form intensified signatures or significantly reduce in flux to form plasma voids. We suggest that cusps intervening neighbouring magnetic anomalies may provide a location for enhanced escape of planetary plasma. Initial statistical analysis shows that intensified signatures are mainly a dayside phenomenon whereas voids are a feature of the night hemisphere.  相似文献   

9.
Accelerometer measurements made by Spirit and Opportunity during their entries through the martian atmosphere are reported. Vertical profiles of atmospheric density, pressure, and temperature with sub-km vertical resolution were obtained using these data between 10 and 100 km. Spirit's temperature profile is ∼10 K warmer than Opportunity's between 20 and 80 km. Unlike all other martian entry profiles, Spirit's temperature profile does not contain any large amplitude, long wavelength oscillations and is nearly isothermal below 30 km. Opportunity's temperature profile contains a strong inversion between 8 and 12 km. A moderate dust storm, which occurred on Mars shortly before these two atmospheric entries, may account for some of the differences between the two profiles. The poorly known angle of attack and unknown wind velocity may cause the temperature profiles to contain errors of tens of Kelvin at 10 km, but these errors would be an order of magnitude smaller above 30 km. On broad scales, the two profiles are consistent with Mars Global Surveyor Thermal Emission Spectrometer (TES) pressure/temperature profiles. Differences exist on smaller scales, particularly associated with the near-isothermal portion of Spirit's profile and the temperature inversion in Opportunity's profile.  相似文献   

10.
The nature of strong martian crustal field sources is investigated by mapping and modeling of Mars Global Surveyor magnetometer data near Apollinaris Patera, a previously proposed volcanic source, supplemented by large-scale correlative studies. Regional mapping yields evidence for positive correlations of orbital anomalies with both Apollinaris Patera and Lucus Planum, a nearby probable extrusive pyroclastic flow deposit that is mapped as part of the Medusae Fossae Formation. Iterative forward modeling of the Apollinaris Patera magnetic anomaly assuming a source model consisting of one or more uniformly magnetized near-surface disks indicates that the source is centered approximately on the construct with a scale size several times larger and comparable to that of the Apollinaris Patera free-air gravity anomaly. A significantly lower rms deviation is obtained using a two-disk model that favors a concentration of magnetization near the construct itself. Estimates for the dipole moment per unit area of the Lucus Planum source together with maximum thicknesses of ∼3 km based on topographic and radar sounding data lead to an estimated minimum magnetization intensity of ∼50 A/m within the pyroclastic deposits. Intensities of this magnitude are similar to those obtained experimentally for Fe-rich Mars analog basalts that cooled in an oxidizing (high fO2) environment in the presence of a strong (?10 μT) surface field. Further evidence for the need for an oxidizing environment is provided by a broad spatial correlation of the locations of phyllosilicate exposures identified to date using Mars Express OMEGA data with areas containing strong crustal magnetic fields and valley networks in the Noachian-aged southern highlands. This indicates that the presence of liquid water, which is a major crustal oxidant, was an important factor in the formation of strong magnetic sources. The evidence discussed here for magnetic sources associated with relatively young volcanic units suggests that a martian dynamo existed during the late Noachian/early Hesperian, after the last major basin-forming impacts and the formation of the northern lowlands.  相似文献   

11.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

12.
Using data of the ASPERA-3 instrument on board the European Mars Express spacecraft we investigate the effect of the martian crustal fields on electrons intruding from the magnetosheath. For the crustal field strength we use published data obtained by the Mars Global Surveyor MAG/ER instrument for a fixed altitude of 400 km. We use statistics on 13 months of 80-100 eV electron observations to show that the electron intrusion altitude determined by a probability measure is approximately linearly dependent on the total field strength at 400 km altitude. We show that on the dayside the mean electron intrusion altitude describes the location of the Magnetic Pile-Up Boundary (MPB) such that we can quantify the effect of the crustal fields on the MPB. On the nightside we quantify the shielding of precipitating electrons by the crustal fields.  相似文献   

13.
Encouraged by recent results of the Mars Odyssey spacecraft mission and the OMEGA team (Mars Express) concerning water in equatorial latitudes between ±45° on Mars and the possible existence of hydrated minerals, we have investigated the water sorption properties of natural zeolites and clay minerals close to martian atmospheric surface conditions as well as the properties of Mg-sulfates and gypsum. To quantify the stability of hydrous minerals on the martian surface and their interaction with the martian atmosphere, the water adsorption and desorption properties of nontronite, montmorillonite, chabazite and clinoptilolite have been investigated using adsorption isotherms at low equilibrium water vapor pressures and temperatures, modeling of the adsorption equilibrium data, thermogravimetry (TG), differential scanning calorimetry (DSC), and proton magic angle spinning nuclear magnetic resonance measurements (1H MAS NMR). Mg-sulfate hydrates were also analyzed using TG/DSC methods to compare with clay mineral and zeolites. Our data show that these microporous minerals can remain hydrated under present martian atmospheric conditions and hold up to 2.5-25 wt% of water in their void volumes at a partial water vapor pressure of 0.001 mbar in a temperature range of 333-193 K. Results of the 1H MAS NMR measurements suggest that parts of the adsorbed water are liquid-like water and that the mobility of the adsorbed water might be of importance for adsorption-water-triggered chemistry and hypothetical exobiological activity on Mars.  相似文献   

14.
Maps of the vector components of the Mars crustal magnetic field are constructed at the mapping altitude (360 to 410 km) using a selected set of data obtained with the Mars Global Surveyor magnetometer during 2780 orbits of the planet in 1999. Forward modeling calculations are then applied to six relatively strong and isolated, dominantly dipolar, magnetic anomalies for the primary purpose of estimating bulk directions of magnetization. Assuming that the magnetizing field was a (dipolar) core dynamo field centered in the planet, paleomagnetic pole positions are calculated for the six primary source bodies together with that for a seventh anomaly analyzed earlier. In agreement with several previous studies, it is found that six of the seven pole positions are clustered in what is now the northern lowlands in a region centered northwest of Olympus Mons (mean pole position: 34°±10° N, 202°±58° E). Assuming that the dynamo dipole moment vector was approximately parallel to the rotation axis, the modeling results therefore suggest a major reorientation of Mars relative to its rotation axis after magnetization was acquired. Such a reorientation may have been stimulated by internal mass redistributions associated with the formation of the northern lowlands and Tharsis, for example. A comparison of the mean paleo (magnetic) equator to the global distribution of crustal fields shows that magnetic anomalies tend to occur at low paleolatitudes. The same appears to be true for the Noachian-aged valley networks, which exhibit a broad spatial correlation with the magnetic anomalies. A possible interpretation is that the formation of magnetic anomalies and the valley networks was favored in the tropics where melting of water ice and snow was a stronger source of both surface valley erosion and groundwater recharge during the earliest history of the planet. This would be consistent with models in which hydrothermal alteration of crustal rocks played a role in producing the unusually strong martian magnetic anomalies.  相似文献   

15.
The possible avenues for photoelectron transport were determined during southern hemisphere winter at Mars by using a mapping analysis of the theoretical magnetic field. Magnetic field line tracing was performed by superposing two magnetic field models: (1) magnetic field derived from a three-dimensional (3D) self-consistent quasi-neutral hybrid model which does not contain the Martian crustal magnetic anomalies and (2) a 3D map of the magnetic field associated with the magnetic anomalies based on Mars Global Surveyor magnetic field measurements. It was found that magnetic field lines connected to the nightside of the planet are mainly channeled within the optical shadow of the magnetotail whereas magnetic field lines connected to the dayside of the planet are observed to form the remainder of the magnetosphere. The simulation suggests that the crustal anomalies create “a magnetic shield” by decreasing the region near Mars which is magnetically connected to the Martian magnetosphere. The rotation of Mars causes periodic changes in magnetic connectivity, but not to qualitative changes in the overall magnetic field draping around Mars.  相似文献   

16.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

17.
Daisuke Kobayashi 《Icarus》2010,210(1):37-42
The crustal magnetic anomalies on Mars may represent hot spot tracks resulting from lithospheric drift on ancient Mars. As evidence, an analysis of lineation patterns derived from the ΔBr magnetic map is presented. The ΔBr map, largely free of external magnetic field effects, allows excellent detail of the magnetic anomaly pattern, particularly in areas of Mars where the field is relatively weak. Using cluster analysis, we show that the elongated anomalies in the martian magnetic field form concentric small circles (parallels of latitude) about two distinct north pole locations. If these pole locations represent ancient spin axes, then tidal force on the early lithosphere by former satellites in retrograde orbits may have pulled the lithosphere in an east-west direction over hot mantle plumes. With an active martian core dynamo, this may have resulted in the observed magnetic anomaly pattern of concentric small circles. As further evidence, we observe that, of the 15 martian giant impact basins that were possibly formed while the core dynamo was active, seven lie along the equators of our two proposed paleopoles. We also find that four other re-magnetized giant impact basins lie along a great circle about the mean magnetic paleopole of Mars. These 11 impact basins, likely the result of fallen retrograde satellite fragments, indicate that Mars once had moons large enough to cause tidal drag on the early martian lithosphere. The results of this study suggest that the magnetic signatures of this tidal interaction have been preserved to the present day.  相似文献   

18.
We study the propagation of gravity waves in the martian atmosphere using a linearized one-dimensional full-wave model. Calculations are carried out for atmospheric parameters characteristic of Mars Orbiter Laser Altimeter (on Mars Global Surveyor MGS) observations of apparent gravity waves in high latitude clouds and MGS radio occultation measurements of temperature variations with height suggestive of gravity wave activity. Waves that reach the thermosphere produce fluctuations in density comparable in amplitude with the density variations detected in Mars Odyssey aerobraking data. Gravity waves of modest amplitude are found to deposit momentum and generate significant heating and cooling in the martian atmosphere. The largest heating and cooling effects occur in the thermosphere, at altitudes between about 130 and 150 km, with heating occurring at the lower altitudes and cooling taking place above.  相似文献   

19.
F. Duru  D.A. Gurnett  R. Frahm 《Icarus》2010,206(1):74-82
The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft is capable of measuring ionospheric electron density by the use of two main methods: remote radar sounding and from the excitation of local plasma oscillations. The frequency of the locally excited electron plasma oscillations is used to measure the local electron density. However, plasma oscillations are not observed when the plasma flow velocity is higher than about 160 km/s, which occurs mainly in the solar wind and magnetosheath. As a consequence, in many passes, there is a sudden disappearance of the plasma oscillations as the spacecraft enters into the magnetosheath. This fact allows us to identify a flow velocity boundary on the dayside, between the ionosphere of Mars and the shocked solar wind. This paper summarizes the results of the measurement of 552 orbits mostly over a period from August 4, 2005 to August 17, 2007. The boundary points found using MARSIS have been verified by measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) instrument on Mars Express. The average position of the flow velocity boundary is compared to flow velocity simulations computed using hybrid model and other boundaries. The boundary altitude is slightly lower than the magnetic pile-up boundary determined using Phobos 2 and Mars Global Surveyor (MGS) crossings, but it is in good agreement with the induced magnetospheric boundary determined by ASPERA-3. Investigation of the effect of the crustal magnetic field revealed that the flow velocity boundary is raised at the locations with strong crustal magnetic fields.  相似文献   

20.
Using an electron transport model, we calculate the electron density of the electron impact-produced nighttime ionosphere of Mars and its spatial structure. As input we use Mars Global Surveyor electron measurements, including an interval when accelerated electrons were observed. Our calculations show that regions of enhanced ionization are localized and occur near magnetic cusps. Horizontal gradients in the calculated ionospheric electron density on the night side of Mars can exceed 104 cm−3 over a distance of a few tens of km; the largest gradients produced by the model are over 600 cm−3 km−1. Such large gradients in the plasma density have several important consequences. These large pressure gradients will lead to localized plasma transport perpendicular to the ambient magnetic field which will generate horizontal currents and electric fields. We calculate the magnitude of these currents to be up to 10 nA/m2. Additionally, transport of ionospheric plasma by neutral winds, which vary in strength and direction as a function of local time and season, can generate large (up to 1000 nA/m2) and spatially structured horizontal currents where the ions are collisionally coupled to the neutral atmosphere while electrons are not. These currents may contribute to localized Joule heating. In addition, closure of the horizontal currents and electric fields may require the presence of vertical, field-aligned currents and fields which may play a role in high altitude acceleration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号