首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The neutron signals measured by the Neutron Spectrometer on board the Mars Odyssey satellite are analyzed at Central Elysium Planitia. The neutron currents have variations associated with the boundaries of geological units in all three energy ranges: thermal, epithermal and fast neutron. Geochemical constraints can be derived from the neutron data using macroscopic absorption cross sections. This variable measures the ability of a material to absorb neutrons, giving clues of its chemical composition. The neutron derived chemical constraints are compared with the elemental abundances measured by the Gamma Subsystem, also on board Mars Odyssey. Differences between the two datasets are interpreted to reflect heterogeneities of probed surfaces. The knowledge already derived from other observations and a detailed examination of the GRS datasets are used to determine a general overview of the geology of the region and possible mechanisms of emplacement. The particular role played by chlorine in this scheme is emphasized.  相似文献   

2.
We jointly analyze data from the High-Energy Neutron Detector (HEND) onboard the NASA Mars Odyssey spacecraft and data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor spacecraft. The former instrument measures the content of hydrogen (in the form of H2O or OH) in the subsurface layer of soil and the latter instrument measures the surface albedo with respect to the flux of solar energy. We have checked the presence of a correlation between these two data sets in various Martian latitude bands. A significant correlation has been found between these data at latitudes poleward of 40° in the northern hemisphere and at latitudes 40°–60° in the southern hemisphere. This correlation is interpreted as evidence for the presence of stable water ice in these regions under a dry layer of soil whose thickness is determined by the condition for equilibrium between the condensation of water from the atmosphere and its sublimation when heated by solar radiation. For these regions, we have derived an empirical relation between the flux of absorbed solar radiation and the thickness of the top dry layer. It allows the burial depth of the water ice table to be predicted with a sub-kilometer resolution based on near-infrared albedo measurements. We have found no correlation in the southern hemisphere at latitudes >60°, although neutron data also suggest that water ice is present in this region under a layer of dry soil. We conclude that the thickness of the dry layer in this region does not correspond to the equilibrium condition between the water ice table and the atmosphere.  相似文献   

3.
Neutron currents measured using the Mars Odyssey Neutron Spectrometer, seasonally varying temperatures measured using the Thermal Emission Spectrometer, and visible images measured using the High Resolution Imaging Science Experiment (HiRISE) are studied to determine the water content and stratigraphy of Olympia Undae. Both the neutron and thermal infrared data are best represented by a two-layered model having a water-ice equivalent hydrogen content of 30±5% in a lower semi-infinite layer, buried beneath a relatively desiccated upper layer that is 9±6 g/cm2 thick (about 6 cm depth at a density of 1.5 g/cm3). A model that is consistent with all three data sets is that the dunes contain a top layer that is relatively mobile, which overlays a niveo-aeolian lower layer. The geomorphology shown by the HiRISE images suggests that the bottom layer may be cemented in place and therefore relatively immobile.  相似文献   

4.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   

5.
Abstract— We have investigated the native amino acid composition of two analogs of Martian soil, JSC Mars‐1 and Salten Skov. A Mars simulation chamber has been built and used to expose samples of these analogs to temperature and lighting conditions similar to those found at low latitudes on the Martian surface. The effects of the simulated conditions have been examined using high‐performance liquid chromatography (HPLC). Exposure to energetic ultraviolet (UV) light in vacuum appears to cause a modest increase in the concentration of certain amino acids within the materials, which is interpreted as resulting from the degradation of microorganisms. The influence of low temperatures shows that the accretion of condensed water on the soils leads to the destruction of amino acids, supporting the idea that reactive chemical processes involving H2O are at work within the Martian soil. We discuss the influence of UV radiation, low temperatures, and gaseous CO2 on the intrinsic amino acid composition of Martian soil analogs and describe, with the help of a simple model, how these studies fit within the framework of life detection on Mars and the practical tasks of choosing and using Martian regolith analogs in planetary research.  相似文献   

6.
Permafrost is ground remaining frozen (temperatures are below the freezing point of water) for more than two consecutive years. An active layer in permafrost regions is defined as a near-surface layer that undergoes freeze-thaw cycles due to day-average surface and soil temperatures oscillating about the freezing point of water. A “dry” active layer may occur in parched soils without free water or ice but significant geomorphic change through cryoturbation is not produced in these environments. A wet active layer is currently absent on Mars. We use recent calculations on the astronomical forcing of climate change to assess the conditions under which an extensive active layer could form on Mars during past climate history. Our examination of insolation patterns and surface topography predicts that an active layer should form on Mars in the geological past at high latitudes as well as on pole-facing slopes at mid-latitudes during repetitive periods of high obliquity. We examine global high-resolution MOLA topography and geological features on Mars and find that a distinctive latitudinal zonality of the occurrence of steep slopes and an asymmetry of steep slopes at mid-latitudes can be attributed to the effect of active layer processes. We conclude that the formation of an active layer during periods of enhanced obliquity throughout the most recent period of the history of Mars (the Amazonian) has led to significant degradation of impact craters, rapidly decreasing the steep slopes characterizing pristine landforms. Our analysis suggests that an active layer has not been present on Mars in the last ∼5 Ma, and that conditions favoring the formation of an active layer were reached in only about 20% of the obliquity excursions between 5 and 10 Ma ago. Conditions favoring an active layer are not predicted to be common in the next 10 Ma. The much higher obliquity excursions predicted for the earlier Amazonian appear to be responsible for the significant reduction in magnitude of crater interior slopes observed at higher latitudes on Mars. The observed slope asymmetry at mid-latitudes suggests direct insolation control, and hence low atmospheric pressure, during the high obliquity periods throughout the Amazonian. We formulate predictions on the nature and distribution of candidate active layer features that could be revealed by higher resolution imaging data.  相似文献   

7.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

8.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

9.
In this paper, we have analyzed neutron spectroscopy data gathered by the High Energy Neutron Detector (HEND) instrument onboard Mars Odyssey for comparison of polar regions. It is known that observation of the neutron albedo of Mars provides important information about the distribution of water-ice in subsurface layers and about peculiarities of the CO2 seasonal cycle. It was found that there are large water-rich permafrost areas with contents of up to ∼50% water by mass fraction at both the north and south Mars polar regions. The water-ice layers at high northern latitudes are placed close to the surface, but in the south they are covered by a dry and relatively thick (10-20 cm) layer of soil. Analysis of temporal variations of neutron flux between summer and winter seasons allowed the estimation of the masses of the CO2 deposits which seasonally condense at the polar regions. The total mass of the southern seasonal deposition was estimated as 6.3×1015 kg, which is larger than the total mass of the seasonal deposition at the north by 40-50%. These results are in good agreement with predictions from the NASA Ames Research Center General Circulation Model (GCM). But, the dynamics of the condensation and sublimation processes are not quite as consistent with these models: the peak accumulation of the condensed mass of CO2 occurred 10-15 degrees of Ls later than is predicted by the GCM.  相似文献   

10.
The results of the analysis of the spectral observations of Mars carried out with the OMEGA spectrometer onboard the Mars Express spacecraft are presented. The data from one of the spectrometer’s channels working in the near-IR spectral range (0.93–2.69 μm) were analyzed. This range includes the characteristic absorption bands of both condensed water phases (ice and frost) and bound water contained in hydrated minerals of the Martial soil. From the 1.93-μm band indicating the presence of these minerals, global maps of the bound-water index have been made. They show a noticeable latitude dependence of the index: the largest values refer to high latitudes (>60°), while they gradually diminish toward the equator. Seasonal variations of the spectral index obtained by the 1.93-μm band are connected with the hydration-dehydration processes occurring in hydrogenous minerals when the temperature of the soil and the relative humidity in the near-surface atmospheric layer are changing. The evolution of the spectral absorption bands of water ice (1.2 and 1.5 μm) dependent on the season testifies to the changes in the microstructure of the surface layer in the North ploar cap caused by the sublimate re-crystallization processes in the ice sheet. The spatial pattern of the location of the areas where the microstructure most quickly grows could be formed under the influence of the stationary atmospheric waves.  相似文献   

11.
Mitrofanov  I. G.  Litvak  M. L.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M. 《Solar System Research》2003,37(5):366-377
We present the first results of the global neutron mapping of Mars by the Russian High-Energy Neutron Detector (HEND) onboard the US 2001 Mars Odyssey spacecraft. Global neutron maps of Mars in various spectral ranges allow the content of water ice and adsorbed and bound water in a near-surface layer of the planet 1 to 2 m in thickness to be estimated. Huge regions of permafrost with a high (several tens of percent by weight) content of water ice are shown to be present in the north and the south of Mars. The continuous observations of Mars for 12 months, from February 18, 2002, through February 8, 2003, are indicative of significant seasonal variations on Mars where the transition from northern winter to northern summer occurred.  相似文献   

12.
It is investigated whether conditions for melting can be temporarily created in the upper sub-surface parts of snow/ice-packs on Mars at subzero surface temperatures by means of the solid-state greenhouse effect, as occurs in snow- and ice-covered regions on Earth. The conditions for this possible temporary melting are quantitatively described for bolometric albedo values A = 0.8 and A = 0.2, and with model parameters typical for the thermo-physical conditions at snow/ice sites on the surface of present Mars. It is demonstrated by numerical modelling that there are several sets of parameters which will lead to development of layers of liquid water just below the top surface of snow- and ice-packs on Mars. This at least partial liquefaction occurs repetitively (e.g. diurnally, seasonally), and can in some cases lead to liquid water persisting through the night-time in the summer season. This liquid water can form in sufficient amounts to be relevant for macroscopic physical (rheology, erosion), for chemical, and eventually also for biological processes. The creation of temporary pockets of sub-surface water by this effect requires pre-existing snow or ice cover, and thus is more likely to take place at high latitudes, since the present deposits of snow/ice can mainly be found there. Possible rheologic and related erosion consequences of the appearance of liquid sub-surface water in martian snow/ice-packs are discussed in view of current observations of recent rheologic processes.  相似文献   

13.
Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock‐forming elements. From a circular, polar low‐altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole‐rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg‐rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine‐rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.  相似文献   

14.
Litvak  M. L.  Mitrofanov  I. G.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M.  Zuber  M. T.  Smith  D. E. 《Solar System Research》2003,37(5):378-386
We analyze the flux of epithermal neutrons from the Martian surface recorded by the Russian High-Energy Neutron Detector (HEND) from February 19 through December 19, 2002. The HEND was installed onboard the NASA 2001 Mars Odyssey spacecraft and is designed to measure neutron fluxes with energies above 1 eV. Over the period of observations, statistically significant variations in the flux of epithermal (10–100 keV) neutrons were found in the northern and southern polar caps. The largest neutron-flux variations were found at subpolar latitudes, where the relative difference between the summer and winter values can reach severalfold. This correlation becomes weaker with increasing distance from the poles. Thus, the relative change in the neutron flux near the 60° parallel is slightly more than 10%. We assume that the detected variations result from the global circulation of atmospheric carbon dioxide in subpolar Martian regions. To additionally test this assumption, we compared the HEND neutron measurements onboard 2001 Mars Odyssey and the seasonal variations in the CO2-layer thickness as observed by the Mars Orbital Laser Altimeter (MOLA) onboard Mars Global Surveyor (MGS).  相似文献   

15.
We analyze the thermal infrared spectra of Jupiter obtained by the Cassini-CIRS instrument during the 2000 flyby to infer temperature and cloud density in the jovian stratosphere and upper troposphere. We use an inversion technique to derive zonal mean vertical profiles of cloud absorption coefficient and optical thickness from a narrow spectral window centered at 1392 cm−1 (7.18 μm). At this wavenumber atmospheric absorption due to ammonia gas is very weak and uncertainties in the ammonia abundance do not impact the cloud retrieval results. For cloud-free conditions the atmospheric transmission is limited by the absorption of molecular hydrogen and methane. The gaseous optical depth of the atmosphere is of order unity at about 1200 mbar. This allows us to probe the structure of the atmosphere through a layer where ammonia cloud formation is expected. The results are presented as height vs latitude cross-sections of the zonal mean cloud optical depth and cloud absorption coefficient. The cloud optical depth and the cloud base pressure exhibit a significant variability with latitude. In regions with thin cloud cover (cloud optical depth less than 2), the cloud absorption coefficient peaks at 1.1±0.05 bar, whereas in regions with thick clouds the peak cloud absorption coefficient occurs in the vicinity of 900±50 mbar. If the cloud optical depth is too large the location of the cloud peak cannot be identified. Based on theoretical expectations for the ammonia condensation pressure we conclude that the detected clouds are probably a system of two different cloud layers: a top ammonia ice layer at about 900 mbar covering only limited latitudes and a second, deeper layer at 1100 mbar, possibly made of ammonium hydrosulfide.  相似文献   

16.
Nair H  Allen M  Anbar AD  Yung YL  Clancy RT 《Icarus》1994,111(1):124-150
The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations.  相似文献   

17.
R-process yields for a helium layer have been calculated within a network of 6033 heavy nuclei using a steady flow approximation. The calculation of the neutron capture cross sections has been improved. The beta decay rates computed by Klapdor and his colleagues have been used in the calculation. We find that ther-process yield peaks near mass numbers 80 and 130 require a neutron number density of approximately 1020 cm?3 and a freezing time comparable to or less than 0.1 s. The peak near mass number 195 requires a neutron number density of about 1021 cm?3 and a freezing time comparable to or less than about 0.01 s. The individual yield features of the steady flowr-process depend entirely upon the neutron capture cross sections of the nuclei along the flow path and the beta decay rates, which can shift the flow path and thereby introduce inappropriate capture cross sections into the determination of the yields.  相似文献   

18.
We are using observations obtained with Mars Express to explore the structure and dynamics of the martian lower atmosphere. We consider a series of radio occultation experiments conducted in May-August 2004, when the season on Mars was midspring of the northern hemisphere. The measurements are widely distributed in latitude and longitude, but the local time remained within a narrow range, 17.0-17.2 h. Most of the atmospheric profiles retrieved from these data contain a distinct, well-mixed convective boundary layer (CBL). We have accurately determined the depth of the CBL and its spatial variations at fixed local time through analysis of these profiles. The CBL extends to a height of 3-10 km above the surface at the season and locations of these measurements. Its depth at fixed local time is clearly correlated with variations in surface elevation on planetary scales, with a weaker dependence on spatial variations in surface temperature. In general, the CBL is deep (8-10 km) where the surface elevation is high, as in Tharsis Montes and Syrtis Major, and shallow (4-6 km) where the surface elevation is low, as in Amazonis and Utopia. This variability results from the combined effects of conditions near the surface and in the atmosphere above the CBL. Convection arises from solar heating of the ground, and the impact of this heat source on thermal structure is largest where the surface pressure and atmospheric density are smallest, at high surface elevations. The vertical extent of the CBL is in turn constrained by the static stability of the overlying atmosphere. These results greatly reduce the long-standing uncertainty concerning the depth of the CBL.  相似文献   

19.
Methane hydrate dissociation due to obliquity-driven temperature change has been suggested as a potential source of atmospheric methane plumes recently observed on Mars. This work uses both equilibrium and time-dependent models to determine how geothermal gradients change on Mars as a result of obliquity and predict how these changes affect gas hydrate stability zones (HSZs). The models predict that the depth to the HSZ decreases with increasing latitude for both CO2 and CH4 hydrate, with CO2 hydrate occurring at shallower depths than CH4 hydrate over all latitudes. The depth of the HSZ increases as surface temperatures warm and decreases as surface temperatures cool with changing obliquity, with the largest change in HSZ volume predicted near the equator and the poles. Therefore, changes in the depth to the HSZ may cause hydrate dissociation near the equator and poles as the geothermal gradient moves in and out of the hydrate stability field over hundreds of thousands of years. Sublimation of overlying ice containing diffused methane could account for recent observations of seasonal methane plumes on Mars. In addition, near-surface gas hydrate reservoirs may be preserved at mid-latitudes due to minimal changes in surface temperature with obliquity over geologic time scales. Comparisons of the predicted changes in the HSZ with hydrate dissociation and diffusion rates reveal that metastable hydrate may also remain in the near subsurface, especially at high latitudes, for millions to billions of years. The presence of methane hydrate in the near subsurface at midlatitudes could be an important analytical target for future Mars missions, as well as serving as a source of fuel for future spacecraft.  相似文献   

20.
We calculate new estimates of ground-ice stability and the depth distribution of the ice table (the depth boundary between ice-free soil above and ice-cemented soil below) and compare these theoretical estimates of the distribution of ground ice with the observed distribution of leakage neutrons measured by the Neutron Spectrometer instrument of the Mars Odyssey spacecraft's Gamma Ray Spectrometer instrument suite. Our calculated ground-ice distribution contains improvements over previous work in that we include the effects of the high thermal conductivity of ice-cemented soil at and below the ice table, we include the surface elevation dependence of the near-surface atmospheric humidity, and we utilize new high resolution maps of thermal inertia, albedo, and elevation from Mars Global Surveyor observations. Results indicate that ground ice should be about 5 times shallower than in previous predictions. While results are dependent on the atmospheric humidity, depths are generally between a few millimeters and a few meters with typical values of a few centimeters. Results are also geographically similar to previous predictions with differences due to the higher resolution of thermal inertia and the inclusion of elevation effects on humidity. Comparison with the measured epithermal-neutron count rates in the southern hemisphere indicate that the geographic distribution of the count rate is best correlated with ground ice in equilibrium with 10 to 20 pr μm (precipitable micrometers) column abundance of atmospheric water, assuming a uniform distribution with CO2; however, given the uncertainties, 5 to 30 pr μm also may be viable. This water abundance represents a longer-term average over 100 to 1000 yr. There is a high degree of correlation between the depth of the ice table and the epithermal count rate that agrees remarkably well with predicted count rates as a function of ice-table depth. These results indicate that ground ice in the upper meter of the martian soil is in diffusive equilibrium with the atmosphere. Since ground ice in this depth zone is expected to undergo saturation/desiccation cycles with orbital variations, this ice should be younger than about 500 kyr and was emplaced under similar cold and dry climate conditions of today. Remaining differences between the predicted depths of the ice table and those inferred from the neutron data are likely to be due to subpixel heterogeneity in the martian surface including the presence of rocks, slopes, and patches of soil with varying thermophysical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号