首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In 2003, we initiated a long-term Adaptive Optics campaign to study the orbit of various main-belt asteroidal systems. Here we present a consistent solution for the mutual orbits of four binary systems: 22 Kalliope, 45 Eugenia, 107 Camilla and 762 Pulcova. With the exception of 45 Eugenia, we did not detect any additional satellites around these systems although we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) that is ∼40 times smaller in diameter than the primary. The common characteristic of these mutual orbits is that they are roughly circular. Three of these binary systems belong to a C-“group” taxonomic class. Our estimates of their bulk densities are consistently lower (∼1 g/cm3) than their associated meteorite analogs, suggesting an interior porosity of 30-50% (taking CI-CO meteorites as analogs). 22 Kalliope, a W-type asteroid, has a significantly higher bulk density of ∼3 g/cm3, derived based on IRAS radiometric size measurement. We compare the characteristics of these orbits in the light of tidal-effect evolution.  相似文献   

2.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

3.
Triplicity and physical characteristics of Asteroid (216) Kleopatra   总被引:2,自引:0,他引:2  
To take full advantage of the September 2008 opposition passage of the M-type Asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis, F. et al. [2008a]. (3749) Balam. In: Green, D.W.E. (Ed.), IAU Circ. 8928; Marchis, F., Descamps, P., Berthier, J., Emery, J.P. [2008b]. S/2008 ((216)) 1 and S/2008 ((216)) 2. In: Green, D.W.E. (Ed.), IAU Circ. 8980). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64 ± 0.02 × 1018 kg. This translates into a bulk density of 3.6 ± 0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ∼30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.  相似文献   

4.
We present near-infrared spectral measurements of Themis family Asteroid (379) Huenna (D ∼ 98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5″ from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 μm and a low slope, characteristic of C-type asteroids. The secondary’s spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary’s spectrum.  相似文献   

5.
We report on Adaptive Optics observations of the satellite of Asteroid 121 Hermione with the ESO-Paranal UT4 VLT and the Keck AO telescopes. The binary system, belonging to the Cybele family, was observed during two observing campaigns in January 2003 and January 2004 aiming to confirm its trajectory and accurately determine its orbital elements. A precessing Keplerian model was used to describe the motion of S/2002 (121) 1. We find that the satellite of Hermione revolves at a=768±11 km from the primary in P=2.582±0.002 days with a roughly circular and prograde orbit (e=0.001±0.001, i=3±2° w.r.t. equator primary). These extensive astrometric measurements enable us to determine the mass of Hermione to be 0.54±0.03×1019 kg and its pole solution (λ0=1.5°±2.00, β0=10°±2.0 in ecliptic J2000). Additional Keck AO observations taken close to the asteroid opposition in December 2003 give us direct insight into the structure of the primary which presents a bilobated shape. Since the angular resolution is limited to the theoretical angular resolution of the telescope (43 mas corresponding to a spatial resolution of 80 km), two shape models (called snowman and peanut) are proposed based on the images which were deconvolved with MISTRAL deconvolution process. Assuming a purely synchronous orbit and knowing the mass of the primary, the peanut shape composed of two separated components is quite unlikely. Additionally the J2 calculated from the analysis of the secondary orbit is not in agreement with the peanut model, but close to the snowman shape. The bulk density of the primary as derived from the observed size of the snowman shape is estimated to ρ∼1.8±0.2 g/cm3 implying a porosity ∼14% for this C-type asteroid, corresponding to a fractured asteroid. Considering the IRAS diameter, the density is lower (ρ=1.1±0.3 g/cm3) leading to a high porosity (p=30-60%) with a nominal value of p=48%, which indicates a completely loose rubble-pile structure for the primary. Further work is necessary to better constrain the size, shape, and then internal structure of Hermione's primary.  相似文献   

6.
Irregular satellites—moons that occupy large orbits of significant eccentricity e and/or inclination I—circle each of the giant planets. The irregulars often extend close to the orbital stability limit, about 1/3-1/2 of the way to the edge of their planet's Hill sphere. The distant, elongated, and inclined orbits suggest capture, which presumably would give a random distribution of inclinations. Yet, no known irregulars have inclinations (relative to the ecliptic) between 47 and 141°.This paper shows that many high-I orbits are unstable due to secular solar perturbations. High-inclination orbits suffer appreciable periodic changes in eccentricity; large eccentricities can either drive particles with ∼70°<I<110° deep into the realm of the regular satellites (where collisions and scatterings are likely to remove them from planetocentric orbits on a timescale of 107-109 years) or expel them from the Hill sphere of the planet.By carrying out long-term (109 years) orbital integrations for a variety of hypothetical satellites, we demonstrate that solar and planetary perturbations, by causing particles to strike (or to escape) their planet, considerably broaden this zone of avoidance. It grows to at least 55°<I<130° for orbits whose pericenters freely oscillate from 0 to 360°, while particles whose pericenters are locked at ±90° (Kozai mechanism) can remain for longer times.We estimate that the stable phase space (over 10 Myr) for satellites trapped in the Kozai resonance contains ∼10% of all stable orbits, suggesting the possible existence of a family of undiscovered objects at higher inclinations than those currently known.  相似文献   

7.
Asteroidal dust particles resulting from family-forming events migrate from their source locations in the asteroid belt inwards towards the Sun under the effect of Poynting-Robertson (PR) drag. Understanding the distribution of these dust particle orbits in the inner solar system is of great importance to determining the asteroidal contribution to the zodiacal cloud, the accretion rate by the Earth, and the threat that these particles pose to spacecraft and satellites in near-Earth space. In order to correctly describe this distribution of orbits in the inner solar system, we must track the dynamical perturbations that the dust particle orbits experience as they migrate inwards. In a seminal paper Öpik (1951) determines that very few of the μm-cm sized dust particles suffer a collision with the planet face as they decay inwards past Mars. Here we re-analyze this problem, considering additionally the likelihood that the dust particle orbits pass through the Hill sphere of Mars (to various depths) and experience potentially significant perturbations to their orbits. We find that a considerable fraction of dust particle orbits will enter the Hill sphere of Mars. Furthermore, we find that there is a bias with inclination, particle size, and eccentricity of the particle orbits that enter the Martian Hill sphere. In particular the bias with inclination may create a bias towards higher-inclination sources in the proportions of asteroid family particles that reach near-Earth space.  相似文献   

8.
The maximum size of impact craters on finite bodies marks the largest impact that can occur short of impact induced disruption of the body. Recently attention has started to focus on large craters on small bodies such as asteroids and rocky and icy satellites. Here the large crater on the recently imaged Asteroid (2867) Steins (with crater diameter to mean asteroid radius ratio of 0.79) is shown to follow a limit set by other similar sized bodies with moderate macroporosity (i.e. fractured asteroids). Thus whilst large, the crater size is not novel, nor does it require Steins to possess an extremely large porosity. In one of the components of the binary Asteroid (90) Antiope there is the recently reported presence of an extremely large depression, possibly a crater, with depression diameter to mean asteroid radius ratio of ∼(1.4–1.62). This is consistent with the maximum size of a crater expected from previous observations of very porous rocky bodies (i.e. rubble-pile asteroids). Finally, a relationship between crater diameter (normalised to body radius) is proposed as a function of body porosity which suggests that the doubling of porosity between fractured asteroids and rubble-pile asteroids, nearly doubles the size (D/R value) of the largest crater sustainable on a rocky body.  相似文献   

9.
D. Polishook  N. Brosch  D. Prialnik 《Icarus》2011,212(1):167-174
Durda et al. (Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M. [2004]. Icarus 170, 243–257), using numerical models, suggested that binary asteroids with large separation, called Escaping Ejecta Binaries (EEBs), can be created by fragments ejected from a disruptive impact event. It is thought that six binary asteroids recently discovered might be EEBs because of the high separation between their components (~100 > a/Rp > ~20).However, the rotation periods of four out of the six objects measured by our group and others and presented here show that these suspected EEBs have fast rotation rates of 2.5–4 h. Because of the small size of the components of these binary asteroids, linked with this fast spinning, we conclude that the rotational-fission mechanism, which is a result of the thermal YORP effect, is the most likely formation scenario. Moreover, scaling the YORP effect for these objects shows that its timescale is shorter than the estimated ages of the three relevant Hirayama families hosting these binary asteroids. Therefore, only the largest (D  19 km) suspected asteroid, (317) Roxane, could be, in fact, the only known EEB.In addition, our results confirm the triple nature of (3749) Balam by measuring mutual events on its lightcurve that match the orbital period of a nearby satellite in addition to its distant companion. Measurements of (1509) Esclangona at different apparitions show a unique shape of the lightcurve that might be explained by color variations.  相似文献   

10.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

11.
We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hubble Space Telescope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 × 1017 to 2 × 1022 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual orbits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retrograde, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.  相似文献   

12.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   

13.
We present the first dynamical solution of the triple asteroid system (45) Eugenia and its two moons Petit–Prince (diameter ∼ 7 km) and S/2004 (45) 1 (diameter ∼ 5 km). The two moons orbit at 1165 and 610 km from the primary, describing an almost-circular orbit (e ∼ 6 × 10−3 and e ∼ 7 × 10−2 respectively). The system is quite different from the other known triple systems in the main belt since the inclinations of the moon orbits are sizeable (9° and 18° with respect to the equator of the primary respectively). No resonances, neither secular nor due to Lidov–Kozai mechanism, were detected in our dynamical solution, suggesting that these inclinations are not due to excitation modes between the primary and the moons. A 10-year evolution study shows that the orbits are slightly affected by perturbations from the Sun, and to a lesser extent by mutual interactions between the moons. The estimated J2 of the primary is three times lower than the theoretical one, calculated assuming the shape of the primary and an homogeneous interior, possibly suggesting the importance of other gravitational harmonics.  相似文献   

14.
This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart??s sense, not associated with a transition of the small body into Jupiter??s family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets?? orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane (a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill??s sense.  相似文献   

15.
We present numerical simulations of near-Earth asteroid (NEA) tidal disruption resulting in bound, mutually orbiting systems. Using a rubble pile model we have constrained the relative likelihoods for possible physical and dynamical properties of the binaries created. Overall 110,500 simulations were run, with each body consisting of ∼1000 particles. The encounter parameters of close approach distance and velocity were varied, as were the bodies' spin, elongation and spin axis direction. The binary production rate increases for closer encounters, at lower speeds, for more elongated bodies, and for bodies with greater spin. The semimajor axes for resultant binaries are peaked between 5 to 20 primary radii, and there is an overall trend for high eccentricity, with 97% of binaries having e > 0.1. The secondary-to-primary size ratios of the simulated binaries are peaked between 0.1 and 0.2, similar to trends among observed asteroid binaries. The spin rates of the primary bodies are narrowly distributed between 3.5- and 6-h periods, whereas the secondaries' periods are more evenly distributed and can exceed 15-h periods. The spin axes of the primary bodies are very closely aligned with the angular momenta of the binary orbits, whereas the secondary spin axes are nearly random. The shapes of the primaries show a large distribution of axis ratios, where those with low elongation (ratio of long and short axis) are both oblate and prolate, and nearly all with large elongation are prolate. This work presents results that suggest tidal disruption of gravitational aggregates can make binaries physically similar to those currently observed in the NEA population. As well, tidal disruption may create an equal number of binaries with qualities different from those observed, mostly binaries with large separation and with elongated primaries.  相似文献   

16.
We carried out new observations of the binary asteroid 22 Kalliope (S2/2001) with the Shane 3-m telescope of the Lick observatory in October and November 2001. With a FWHM (full width at half maximum) of 0″.2, Kalliope (apparent size of about 0″.15) was not resolved but it was possible to separate the secondary from its primary whose apparent separation was of the order of 0″.7 with a magnitude difference of 3.22±0.20. As each set of observations spanned a few days of time, they are well distributed along the secondary's orbit, enabling us to accurately estimate its orbit.The satellite orbits 22 Kalliope in a prograde manner with respect to Kalliope's rotational spin (which is in a retrograde sense relative to its orbit around the Sun), on a highly inclined (i=19.8±2.0 with respect to the equator of 22 Kalliope) and moderately eccentric orbit (e=0.07±0.02) with an orbital period of 3.58±0.08 days. The semi-major axis is 1020±40 km. Using Kalliope's diameter as determined from IRAS data, the asteroid's bulk density is about 2.03±0.16 g cm−3, suggestive of a highly porous body with a porosity of 70% considering that the grain density of its meteoritic analog is of ∼7.4 g cm−3. This suggests a rubble pile, rather than solid, body. The measured nodal precession rate of the secondary's orbit seems to be much higher than expected from Kalliope's oblateness, assuming a homogeneous body (constant density). This suggests that Kalliope may be 60% more elongated or 35% larger than presently believed or/and that its internal structure is highly inhomogeneous with a denser outer shell.  相似文献   

17.
The dynamical stability of a bound triple system composed of a small binary or minor planetary system moving on a orbit inclined to a central third body is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of extrasolar planetary systems and minor planetary systems against disruption, component exchange or capture. The Hill stability criterion is applied to triple star systems and extrasolar planetary systems, the Sun-Earth-Moon system and Kuiper Belt binary systems to determine the critical distances for stable orbits. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects.These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the binary orbit relative to the third body substantially decreases stability regions as the eccentricity reaches higher values. The Kuiper Belt binaries were found to be stable if they move on circular orbits. Taking into account the eccentricity, it is less clear that all the systems are stable.  相似文献   

18.
We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×106 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×105 years but that they spend only a small fraction of this time (∼ a few 103 years) with q<1.3 AU. From numerical integrations for 5×106 years we find that the half lifetime of NEAs in “cometary” orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×105 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt (Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ∼20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will disintegrate once (or shortly after) they end their active phases.  相似文献   

19.
In addition to the detection of an asteroid moon or a binary asteroid, the knowledge of the satellite’s true orbit is of high importance to derive fundamental physical parameters of the binary system such as its mass and to shed light on its possible formation history and dynamical evolution (prograde/retrograde orbit, large/small eccentricity or inclination, etc.). A new methodology for preliminary orbit determination of binary asteroids – and visual binaries in general – is proposed. It is based on Thiele–Innes method combined with a ‘trial and error’ Monte-Carlo technique. This method provides the full set of solutions (bundle of orbits, with the 7 orbital elements) even for a reduced number of observations. The mass is a direct by-product of this orbit determination, from which one can next infer the bulk-density and porosity. In addition to the bundle of orbits, the method provides the marginal probability densities of the foreseen parameters. Such error analysis – since it avoids linear approximation – can be of importance for the prediction of the satellite’s position in the plane-of-sky during future stellar occultations or subsequent observations, but also for the analysis of the orbit’s secular evolution. After briefly describing the method, we present the algorithm and its application to some practical cases, with particular emphasis on asteroids binaries and applications on orbital evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号